

Graph Assisted Offline-Online Deep Reinforcement Learning (GOODRL) for Dynamic Workflow Scheduling

Authors: Yifan Yang, Gang Chen, Hui Ma, Cong Zhang, Zhiguang Cao, Mengjie Zhang

ICLR 2025

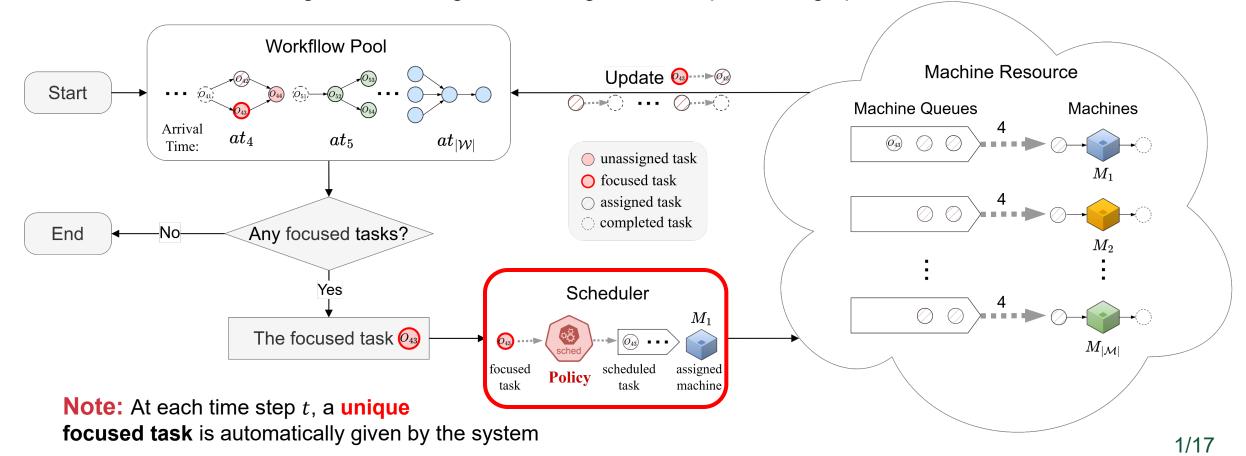
2025/4/24

Code

Paper

What is Dynamic Workflow Scheduling (DWS)?

- Goals: Assign dynamically arriving workflow tasks to machines to minimize mean flowtime
- Workflows are DAGs: Nodes = Tasks, Edges = Dependencies
- Machines: Heterogeneous configurations, e.g., different processing speeds



Why is DWS Challenging?

1. Flexible Task Assignment Across Heterogeneous Machines

- Real-world cloud environments are heterogeneous with machines of varying configurations
- It is crucial to intelligently allocate tasks to the most suitable machines
- Ignoring heterogeneity leads to inefficient resource use and longer workflow flowtimes

2. Unpredictable Workflow Arrivals and Patterns

- Workflows arrive in real time and constantly change in amount and patterns
- Need to consider the complex relationship between newly arrived, ongoing, and completed workflows

3. Rapidly changing environments

- System workload and resource status are constantly changing
- Necessitates real-time decisions-making
- Necessitates adaptive scheduling strategies to cope with environmental changes

Limitations of Existing Approaches

Priority Dispatching Rules (PDRs)

- Hand-craft heuristic
- Fast, intuitive, and easy to implement
- Require extensive expertise and time-consuming tuning
- Unable for online adaption to newly collected data

Genetic Programming-based Hyper-Heuristic (GPHH)

- Automatically evolves
 tree-based PDRs
 through iterative
 evaluation-and-evolution
- State-of-the-art for DWS
- Unsuitable for online adaption to newly collected data

Deep Reinforcement Learning (DRL)

- Successfully learns neural network-based PDRs via RL
- Suitable for online adaption through fine-tuning
- Existing vector/matrix-based state representations fail to capture complex task machine interactions in DWS

Related Work in Learning-to-Optimize (L2O)

- Unable to capture complex and dynamic relationships between workflows and machines.
- Neglecting the critic's role in Actor-Critic-based RL stability for large-scale problems
- Unable to continuously learn in the face of future environmental changes

	Graph Representations	Neural Network Architectures	Training Methods	Problem Scales
[1]	Static disjunctive graphs	Shared feature extractor	Unmodified Proximal Policy Optimization (PPO)	≤2,000 tasks
[2]	Static disjunctive graphs	Only one feature extractor	Unmodified REINFORCE	≤2,000 tasks
[3]	Static disjunctive graphs	Only one feature extractor	Self-supervised learning	≤2,000 tasks
Ours	Novel dynamic graphs	Separate feature extractor	Novel offline-online PPO	≤600,000 tasks

^[1] Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Chi, X. (2020). Learning to dispatch for job shop scheduling via deep reinforcement learning. In NeurIPS.

^[2] Zhang, C., Cao, Z., Song, W., Wu, Y., & Zhang, J. (2024). Deep reinforcement learning guided improvement heuristic for job shop scheduling. In ICLR.

^[3] Corsini, A., Porrello, A., Calderara, S., & Dell'Amico, M. (2024). Self-labeling the job shop scheduling problem. In NeurIPS.

Our Approach – GOODRL

Overall Goal: Introduce **G**raph Assisted **O**ffline-**O**nline **D**eep **R**einforcement **L**earning (GOODRL) to learn an adaptive and intelligent **scheduling agent** for DWS.

Challenges

1. Flexible Task Assignment Across Heterogeneous Machines

Unpredictable Workflow Arrivals and Patterns

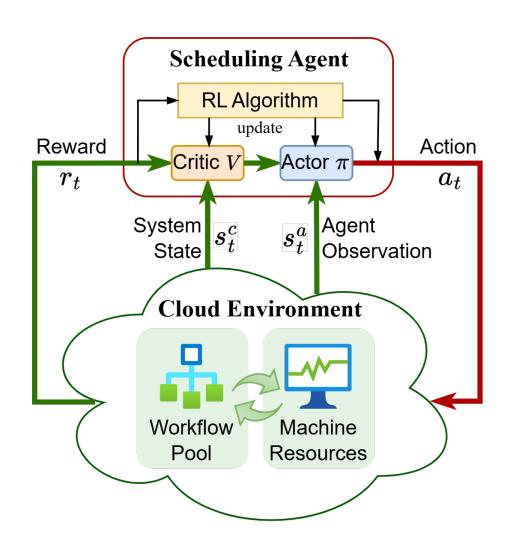
3. Rapidly changing environments

Key Innovations

- Task-Specific Graph & Graph Attention Actor Network
 - Precisely differentiate all eligible machines.
 - Explicitly captures the future impact of each machine on the current task at both topological and feature levels.
- System-Oriented Graph & Graph Attention Critic Network
 - Accurately capture real-time changes in the system state.
 - Seamlessly integrate newly arriving workflows with existing ones.
- Offline-Online Training Method
 - Offline imitation learning followed by standard PPO.
 - Online PPO with gradient control and decoupled highfrequency critic techniques.

ICLR

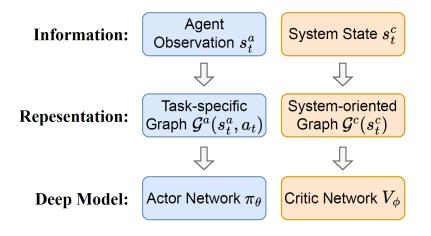
Overview of GOODRL

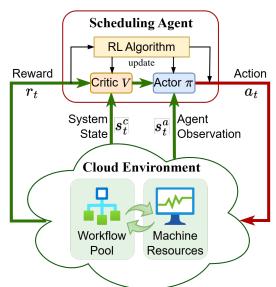


The goal of GOODRL is to learn an adaptive and intelligent **scheduling agent** for DWS.

- Step1: Formulate DWS as an RL problem (Innovation of graph representations)
- Step2: Graph Attention Actor & Critic Networks (Innovation of neural network architectures)
- Step3: Two-stage Offline-Online Learning (Innovation of training methods)

Step1: Formulate DWS as an RL Problem

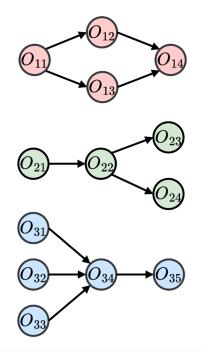




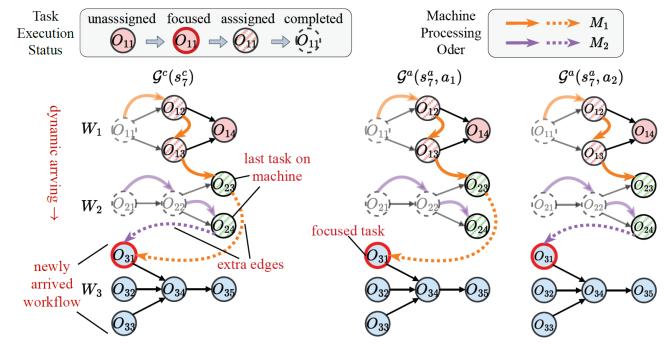
- System State: Snapshot of the entire DWS system at any time, including all tasks, machines, workflows, and their dependencies.
- Agent Observation: Partial view of the system from the agent's perspective, tailored for decision-making.
- Action: Assign the focused task to an eligible machine's waiting queue.
- **Transition**: Transit from state s_t to state s_{t+1} after an action is executed, updating workflow and machine information.
- **Rewards**: Defined as the negative normalized sum of workflow flowtimes completed between consecutive decision steps. The objective is $min \frac{1}{|\mathcal{W}|} \sum_{i=1}^{|\mathcal{W}|} F_i$.

Step1: Dynamic Graph Representations

Example: The tasks $\mathcal{O} = \{O_{ij}\}$ of workflows W_1, W_2, W_3 are assigned to machines M_1 and M_2 .



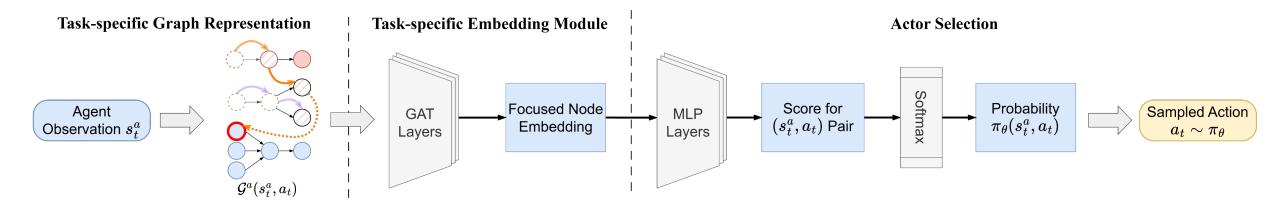
At state s_7 , should the focused task O_{31} to be assigned to machine M_1 or M_2 ?



- (a) System-oriented Graph Representation
 - For critic network V_{ϕ} , represents the entire system state

- (b) Task-specific Graph Representation
 - For actor network π_{θ} , focuses on task-machine interactions

Step2: Actor Network Architecture



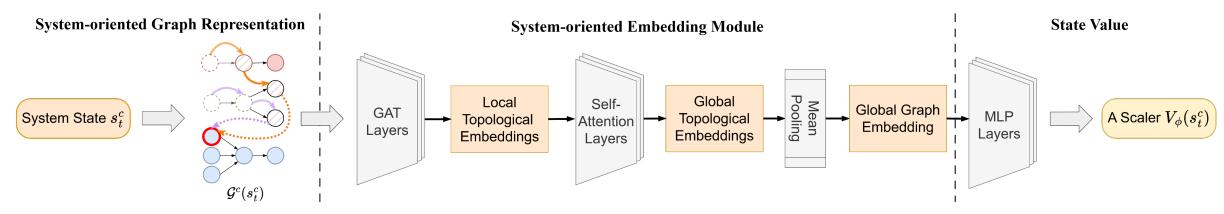
- Pairwise Processing: Evaluate each (s, a) pair separately, considering the immediate and future impact of assigning any machine to the focused task.
- Focused Embedding: Directly focus on the embedding of the focused task, rather than using mean pooling to combine embeddings of all nodes.

$$\mathcal{L}_{CE} = \frac{1}{|\mathcal{D}|} \sum_{s_t^a, a_t \in \mathcal{D}} \text{CrossEntropy}(\pi_{\theta}(s_t^a, \cdot), a_t)$$

Ablation Study

Actor Architecture	100-th	200-th	300-th	400-th	500-th	600-th	700-th	800-th	900-th
Ours-TSEM	2.7486	2.7106	2.6881	2.6647	2.6498	2.6038	2.5726	2.5297	2.5091
TSEM w/o. pair	3.1707	3.1597	3.1538	3.1468	3.1435	3.1394	3.1365	3.1333	3.1302
TSEM w. mean	2.7099	2.7209	2.7152	2.6659	2.7109	2.6172	2.5989	2.5334	2.5243

Step2: Critic Network Architecture



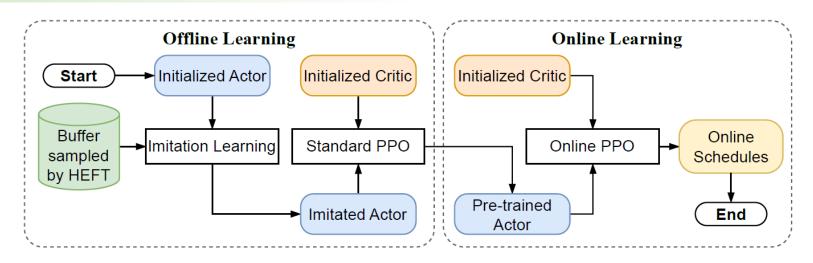
- Comprehensive Context Awareness: Process the information of each edge in bi-direction and use additional edges between the focused task and all eligible machines.
- Long-range Interaction Modeling: Use a self-attention mechanism to capture long-range dependencies across all task nodes, including those belonging to newly arrived workflows.

$$\mathcal{L}_{MSE} = \frac{1}{|\mathcal{D}|} \sum_{s_t^c \in \mathcal{D}} (V_{\phi}(s_t^c) - R_t)^2$$

Ablation Study

Critic Architecture	100-th	200-th	300-th	400-th	500-th	600-th	700-th	800-th
Ours-SOEM SOEM w/o. edge SOEM w/o. self			11.6626		7.8581 8.8853 12.0733		7.1238 7.5607 10.1497	6.0035 7.593 8.5121

Step3: Two-stage Offline-Online Learning



Offline Phase:

- Pre-train actor network via imitation learning to mimic the behavior of experts (e.g., HEFT).
- Use Proximal Policy Optimization (PPO) algorithm for joint actor-critic training.

Online Phase

Enhanced PPO with gradient control and decoupled high-frequent critic updates.

Ablation Study

Training Method	150-th	175-th	200-th	225-th	250-th
Ours-Online Online w/o. grad. Online w/o. freq.		1.50% -1.08% -261.27%	1.57% -1.24% -283.93%	1.52% -1.36% -336.86%	1.52% -1.64% -382.54%

Experimental Setup

Environment Settings

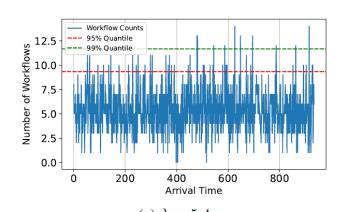
- Workflow patterns: Montage, CyberShake, SIPHT, Inspiral
- Machines: 5 types × 5 each, 6 types × 4 each
- Arrival patterns: Poisson, $\lambda = \{5.4, 9\}$ workflows/hour

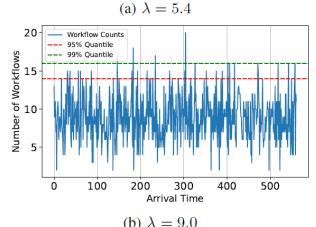
Baselines

- Traditional heuristics: EST, PEFT, HEFT
- Evolutionary computation approach: GPHH (30 independent runs)
- DRL-based approach: **ERL-DWS** (5 independent runs)

Model Configurations

- Actor network: 2 GAT layers and 4 MLP layers, with each of layer has 128 hidden-dimensions
- Critic network: 2 GAT layers, 1 self-attention layers, and 4 MLP layers, with hidden-dimension =128





Offline Scenario Performance

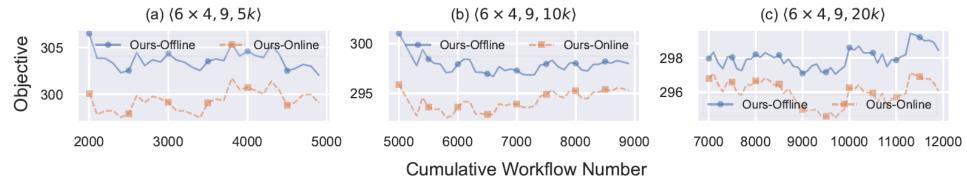
Camaniaa	E	ST	PE	EFT	HI	EFT	GF	·HH	ERL	-DWS	Ours-0	Offline
Scenarios	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap
$\langle 5 \times 5, 5.4, 1k \rangle$	1243.15	204.51%	551.30	35.04%	509.95	24.91%	408.24	0.00%	1889.47	362.83%	413.29	1.24%
$\langle 5 \times 5, 9, 1k \rangle$	1152.40	177.94%	510.55	23.14%	478.44	15.39%	430.28	3.78%	2180.41	425.89%	414.61	0.00%
$\langle 6 \times 4, 5.4, 1k \rangle$	1083.02	290.07%	438.40	57.90%	391.61	41.05%	322.52	16.16%	713.87	157.11%	277.65	0.00%
$\langle 6 \times 4, 9, 1k \rangle$	990.20	248.92%	391.17	37.84%	357.95	26.13%	300.20	5.78%	1523.83	436.95%	283.79	0.00%
$\langle 5 \times 5, 5.4, 3k \rangle$	1235.14	202.87%	551.33	35.19%	508.10	24.59%	407.81	0.00%	2670.81	554.91%	408.41	0.15%
$\langle 5 \times 5, 9, 3k \rangle$	1153.02	179.00%	510.22	23.46%	477.07	15.44%	427.04	3.33%	3582.70	766.91%	413.27	0.00%
$\langle 6 \times 4, 5.4, 3k \rangle$	1081.28	289.98%	438.62	58.19%	390.64	40.89%	386.77	39.49%	1108.95	299.96%	277.27	0.00%
$\langle 6 \times 4, 9, 3k \rangle$	992.46	250.72%	389.94	37.80%	356.08	25.83%	358.40	26.65%	2748.28	871.19%	282.98	0.00%
$\langle 5 \times 5, 5.4, 5k \rangle$	1231.70	202.34%	550.53	35.13%	507.91	24.67%	408.38	0.24%	2944.35	622.73%	407.39	0.00%
$\langle 5 \times 5, 9, 5k \rangle$	1146.62	177.17%	509.61	23.19%	477.12	15.33%	427.88	3.43%	4299.75	939.38%	413.68	0.00%
$\langle 6 \times 4, 5.4, 5k \rangle$	1076.75	288.11%	437.53	57.71%	389.24	40.30%	386.95	39.47%	1281.00	361.73%	277.44	0.00%
$\langle 6 \times 4, 9, 5k \rangle$	992.92	250.55%	388.68	37.22%	356.47	25.85%	297.40	5.00%	3480.87	1128.92%	283.25	0.00%
	5.	08		4	2.	.92	1.	.92	5	.92	1.	17

Observations

- GOODRL achieves the lowest mean flowtime in most offline scenarios
- Outperforms heuristics by up to 290.07%
- More robust performance than GPHH and ERL-DWS

Online Scenario Performance

Scenarios	Е	EST		PEFT		HEFT		НН	ERL-DWS		Ours-Offline		Ours-0	Online
Scenarios	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap
$\langle 6 \times 4, 5.4, 5k \rangle$	1076.01	277.05%	439.28	53.93%	391.63	37.23%	303.70	6.42%	1349.12	372.74%	286.43	0.37%	285.38	0.00%
$\langle 6 \times 4, 5.4, 10k \rangle$	1077.09	279.13%	439.64	54.75%	390.26	37.37%	305.31	7.47%	1778.26	525.94%	284.09	$\boldsymbol{0.00\%}$	285.12	0.36%
$\langle 6 \times 4, 5.4, 20k \rangle$	1072.90	276.97%	439.88	54.55%	391.18	37.44%	309.12	8.61%	2257.78	693.29%	286.08	0.52%	284.61	0.00%
$\langle 6 \times 4, 9, 5k \rangle$	994.00	233.40%	387.84	30.09%	355.51	19.24%	303.57	1.82%	1246.91	318.24%	301.00	0.96%	298.14	0.00%
$\langle 6 \times 4, 9, 10k \rangle$	993.97	238.09%	387.64	31.85%	355.21	20.82%	307.27	4.52%	1838.20	525.24%	297.19	1.09%	294.00	0.00%
$\langle 6 \times 4, 9, 20k \rangle$	997.53	231.28%	388.79	29.12%	356.39	18.36%	312.56	5.08%	2783.78	835.93%	301.11	1.24%	297.44	0.00%
		6		5		4	3	3		7	1.	83	1.1	17



Observations

- GOODRL-Online further improves scheduling performance upon GOODRL-Offline
- Demonstrates effective online adaptation even in large-scale scenarios (e.g., 20k workflows)

Scalability & Transferability

Scalability to significant changes

Scenarios	Workflow Pattern	Arrival Rate	Machine Number	EST	PEFT	HEFT	GP	ERL-DWS	Ours
1	√							14103.84 6403.65	862.59 791.86
	<u> </u>			l					
3 4	_	$\sqrt{}$		1793.76 1512.44				3208.32 2696.69	761.24 509.17
5	_	$\sqrt{}$		1317.28				2534.30	385.44
6	_	$\sqrt{}$	6×5	1190.84	450.93	404.47	286.00	2420.63	282.07

GOODRL can effectively handle significant changes in workflow patterns, arrival rates, and machine configurations without retraining

■ Transferability to FJSS

FJSS Size	MOR	SPT	FIFO	MWKR	DRL-G	DRL-S	Ours
10×5 20×5 30×10	116.69	129.06	119.62	115.29	111.67	105.61	112.57
20×5	217.17	229.89	216.13	216.98	211.22	207.50	202.38
30×10	320.18	347.40	328.50	319.89	313.04	312.20	304.63
40×10	425.19	443.30	427.22	425.70	416.18	415.15	395.70

GOODRL can also performs **competitively** on **other scheduling problems** such as FJSS [1]

^[1] Song, W., Chen, X., Li, Q., & Cao, Z. (2022). Flexible job-shop scheduling via graph neural network and deep reinforcement learning. *IEEE Transactions on Industrial Informatics*.

Extensibility & Inference Time

■ Extensibility to multi-objective problems

Scenarios	Objectives	Single-Obj.	Multi-Obj.	Diff.
$\langle 5 \times 5, 5.4, 30 \rangle$	flowtime	401.77	420.29	+4.61%
	cost	139.82	82.28	-41.15%
$ \overline{\langle 5 \times 5, 5.9, 30 \rangle} $	flowtime	408.49	413.02	+1.11%
	cost	116.32	97.51	-16.17%
	flowtime	277.57	286.73	+3.30%
	cost	192.24	143.47	-25.37%
$\langle 6 \times 4, 9, 30 \rangle$	flowtime	285.93	306.90	+7.33%
	cost	135.58	91.18	-32.75%

GOODRL can support other practical objectives, such as *cost* and *flowtime*, by modifying the reward function

■ Average inference time to make a decision

Scenarios	GPHH	ERL-DWS	Ours
$ \begin{array}{c} \langle 5 \times 5, 5.4, 1k \rangle \\ \langle 5 \times 5, 9, 1k \rangle \\ \langle 6 \times 4, 5.4, 1k \rangle \\ \langle 6 \times 4, 9, 1k \rangle \end{array} $	1.0 ms 0.6 ms	2.6 ms 2.7 ms 2.7 ms 2.5 ms	6.1 ms 7.6 ms 6.0 ms 6.8 ms

GOODRL's inference time is less than the communication latency and data transfer time in cloud, hence **short enough** to meet real-world requirements

Conclusion

Contributions

- Task-Specific Graph Representation & Graph Attention Actor Network:

 Dynamically evaluate both immediate and future impacts among tasks, workflows, and machines.
- System-oriented Graph Representation & Graph Attention Critic Network:
 Model complex interactions across multiple workflows and machines for accurate value estimation.
- Offline Imitation Learning & Enhanced Online PPO:
 Efficient pre-training with imitation learning, followed by robust fine-tuning via gradient control and decoupled high-frequency critic updates.
- Superior performance compared to state-of-the-art baselines in minimizing mean flowtime.

Future Work

- Extend to more complex cloud environments (e.g., Unlimited machine configurations)
- Develop multi-objective learning techniques (e.g., Pareto-optimal learning)
- Incorporate constraint handling mechanisms (e.g. Learning an additional constraint control policy)