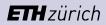
What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis

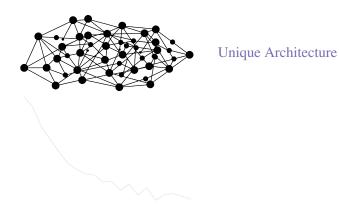
ICLR 2025

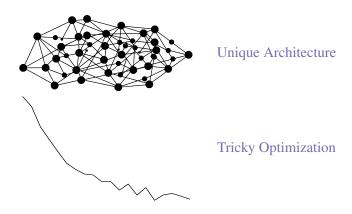
Joint Work

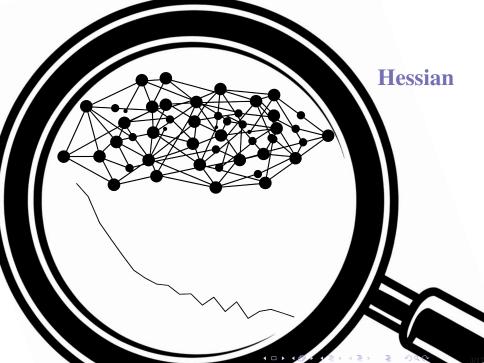


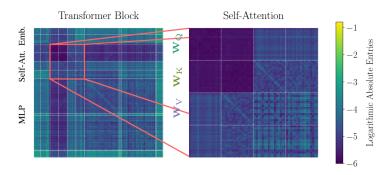
Felix Dangel

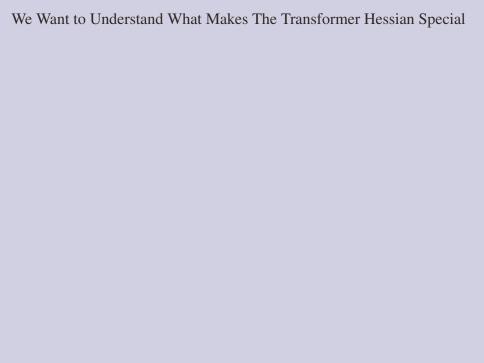
Sidak Pal Singh

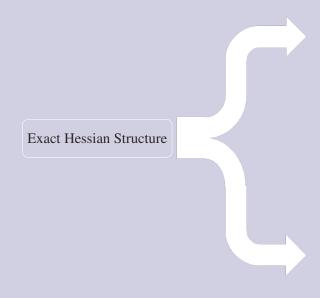


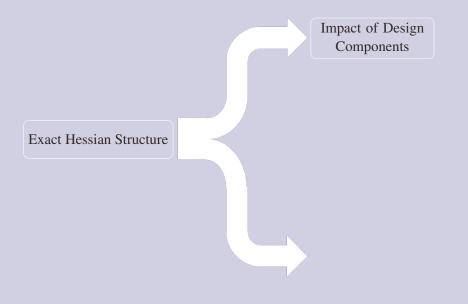

Why Study the Transformer Hessian?




Why Study the Transformer Hessian?


Why Study the Transformer Hessian?





On the left, the Hessian of a minimal Transformer, and, on the right the zoomed-in block w.r.t. query, key and value parameters.

Exact Hessian Structure

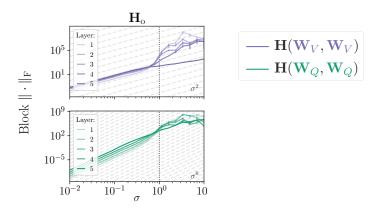
Setup

Gauss-Newton & Block Decomposition

$$\mathbf{H} = \mathbf{H}_o + \mathbf{H}_f$$

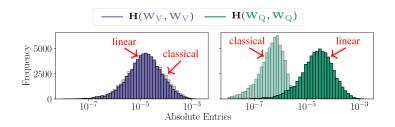
We split the Hessian into two terms, then we analyze their blocks.

Dependence on Data


$$\begin{aligned} \mathbf{H}_o \in & K & \begin{bmatrix} \mathcal{O}(\mathbf{X}^6) & \mathcal{O}(\mathbf{X}^6) & \mathcal{O}(\mathbf{X}^4) \\ \cdot & \mathcal{O}(\mathbf{X}^6) & \mathcal{O}(\mathbf{X}^4) \\ \cdot & \cdot & \mathcal{O}(\mathbf{X}^2) \end{bmatrix} \end{aligned}$$

$$\mathbf{H}_o \in \begin{array}{ccccc} Q & K & V \\ \mathbb{Q}(\mathbf{X}^6) & \mathcal{O}(\mathbf{X}^6) & \mathcal{O}(\mathbf{X}^4) \\ V & & \mathcal{O}(\mathbf{X}^6) & \mathcal{O}(\mathbf{X}^2) \end{array} \right]$$

Query and key blocks are more data-dependent.



Growth rates of block Frobenius norms w.r.t. the magnitude σ of **X** confirm our theoretical predictions.

Theoretical growth rates of block Frobenius norms w.r.t. the magnitude σ of **X** hold also for deeper networks and $\sigma < 1$.

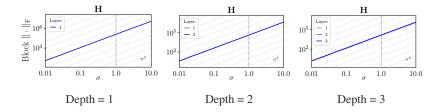
Data Dependence Varies Across Blocks Because of Softmax

Softmax results in heterogeneity in magnitudes of Hessian block entries.

Self-Attention vs MLP Hessian

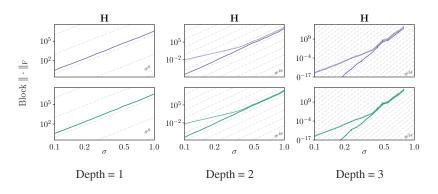
Model Family	Transformer
$\mathbf{H}^{\mathrm{lin}}_{\mathbf{O}}$	$\mathcal{O}(\mathbf{\Sigma_{xx}^3})$

Dependence of the Hessian of linear layers on the intra-sequence covariance matrix $\Sigma_{xx} = \frac{1}{L} \mathbf{X}^{\top} \mathbf{X}$ in a big \mathcal{O} notation.


Self-Attention vs MLP Hessian

Model Family	Transformer	MLP/CNN
$\mathbf{H}^{ ext{lin}}_{\mathbf{O}}$	$\mathcal{O}(\mathbf{\Sigma_{xx}^3})$	$\mathcal{O}(\mathbf{\Sigma_{xx}})$

Dependence of the Hessian of linear layers on the intra-sequence covariance matrix $\Sigma_{xx} = \frac{1}{L} \mathbf{X}^{\top} \mathbf{X}$ in a big \mathcal{O} notation.^a


^aSource of MLP Hessian formulas: Singh et al. "Analytic Insights into Structure and Rank of Neural Network Hessian Maps." In NeurIPS (2021).

Multilayer Linear MLP Hessian Growth Rates

Diagonal blocks of a linear MLP grow the same with σ irrespective of network depth.

Multilayer Linear Transformer Hessian Growth Rates

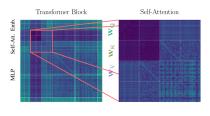
Diagonal blocks of a linear Transformer grow super-exponentially with depth.

Conclusion

Conclusion

Summary:

- Exact Hessian of the self-attention layer
- Block-heterogeneity in terms of data dependence
- Influence of softmax on the Hessian
- Differences compared to MLPs/CNNs


Conclusion

Summary:

- Exact Hessian of the self-attention layer
- Block-heterogeneity in terms of data dependence
- Influence of softmax on the Hessian
- Differences compared to MLPs/CNNs

In the paper you will also find the discussion of:

- Block-heterogeneity in terms of weights and attention moments
- Influence of the query-key parametrization of the self-attention
- Influence of multi-head self-attention

Thank you!

What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis

Weronika Ormaniec Felix Dangel Sidak Pal Singh

Correspondence: wormaniec@ethz.ch