UNICOTT: A UNIFIED FRAMEWORK FOR STRUCTURAL CHAIN-OF-THOUGHT DISTILLATION

Zhichang Wang

Introduction

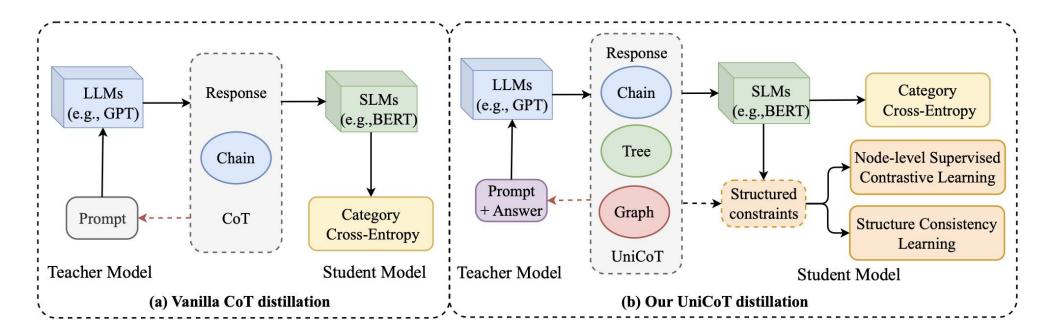


Figure 1: We compare different architectures: (a) generating vanilla CoT for distillation; (b) our UniCoTT, which uses UniCoT as a bridge to transfer knowledge between diverse structural thoughts.

Motivation

- How to efficiently transfer the CoT capabilities that LLMs possess to SLMs while preventing LLMs from producing erroneous reasoning explanations that could degrade performance.
- How to uniformly consider CoT prompts with different structures, such as chain, tree, and graph structures, in the process of knowledge transfer (i.e., prompting LLMs and training SLMs).

Contribution

- UniCoTT prompts LLMs to construct precise structured CoTs (i.e., UniCoT) in a unified way.
- UniCoTT utilizes the proposed unified supervised learning and structural consistency learning strategies to transfer knowledge of structured CoT to SLMs.

Methods

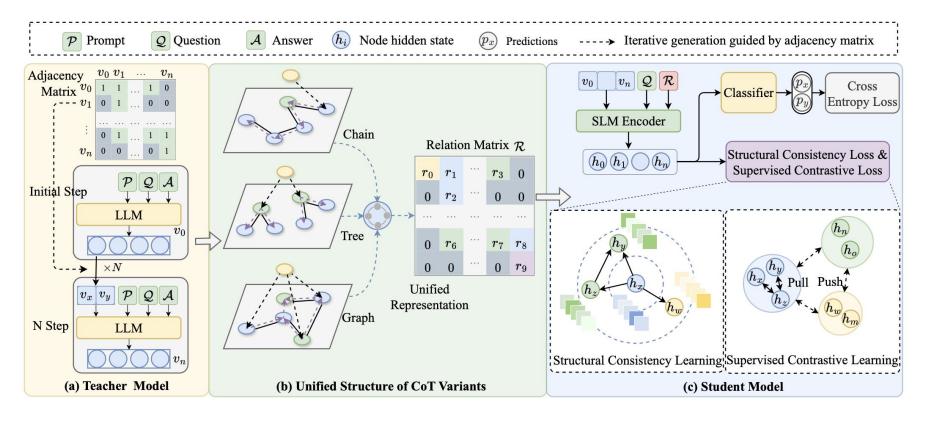


Figure 2: The illustration of our method, consisting of (1) LLMs construct UniCoT consisting of explanations with structural logic through N-step iteration; (2) SLMs obtain structured knowledge in UniCoT through node-level supervised contrastive loss and structural consistency learning.

Overview of UNICoTT

Teacher Network

$$v_i^* = \operatorname{arg\,max} \log P(v_i \mid p, q, a^*, \mathcal{P}(v_i))$$

Student Network

$$\mathcal{L}_{cce}(y) = \sum_{i} a_i^* \log(\hat{y}_i)$$

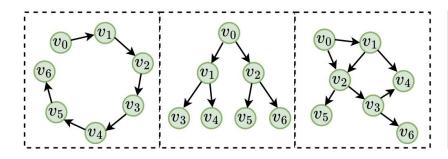
Construction of UNICoT

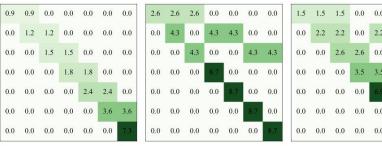
Iteratively Constructing UniCoT

$$v_t \sim p_{\text{LLM}}(v_t|p,q,a^*,\mathcal{P}(v_t))$$

Unified Representation of UniCoT

$$r_{ij} = rac{a_{ij}}{\mathrm{Dij}(v_i, \phi(v_i))}$$





Node-level supervised contrastive loss

$$h_j = \text{Encoder}_{\text{SLM}}(v_j), \quad \forall j \in \{0, \dots, N_v\},$$

$$\mathcal{L}_{
m nsc} = -\sum_{j,j'=0,j!=j'}^{N_v} \log rac{\exp(v_j \cdot v_{j'}/ au)}{\sum_{k=1}^{K} \exp(v_j \cdot v_k^n/ au)},$$

Structural consistency learning

$$\xi_{\chi} = \sum_{i}^{N_{v}} \|\mathbf{W} \cdot s_{i} - \chi_{i}\|$$
 $\mathcal{L}_{sd} = \frac{1}{D} \sum_{d=1}^{D} \operatorname{ReLU} \left(1 - \sqrt{\sigma_{d} + \tau_{sd}}\right)$

$$\mathcal{L}_{se} = rac{1}{D imes (N_v-1)} \sum_{i!=j} \Sigma_{\mathcal{S}}[i,j].$$

Experiment

Table 1: A performance comparison of various methods on the factual reasoning benchmark, with the best results emphasized in **bold**. The Base Model is the student network used for training. The results of using more pre-training language models as the base model are provided in Appendix A.4.

			CREAK			CSQA2			StrategyQA			
Base Model	Method	Structure	Acc.	F1.	Ins.	Acc.	F1.	Ins.	Acc.	F1.	Ins.	
	+None	_	69.3	69.1	70.1	55.1	55.0	55.4	82.7	82.7	82.3	
	CoT	Chain	77.7	76.6	78.7	71.1	71.0	70.9	87.7	87.6	88.4	
	SCOTT	Chain	84.1	84.2	83.5	85.2	85.2	86.6	90.0	89.8	90.8	
BERT-base	DSbS	Chain	69.5	69.5	69.4	54.2	54.1	54.9	81.0	80.9	80.7	
	UniCoTT	Chain	92.7	92.8	93.0	81.5	81.4	81.8	90.9	90.9	91.1	
	UniCoTT	Tree	94.5	94.4	94.9	87.9	87.9	89.2	93.4	93.5	94.0	
	UniCoTT	Graph	95.8	95.6	96.0	83.8	83.4	84.9	92.1	92.4	93.2	
RoBERTa-base	+None	-	71.3	71.3	71.4	56.0	55.8	55.7	83.9	83.9	84.1	
	CoT	Chain	86.5	86.4	86.7	72.7	72.6	72.4	86.6	86.5	90.0	
	SCOTT	Chain	90.2	90.2	90.5	82.3	82.3	81.6	91.5	91.2	90.9	
	DSbS	Chain	72.2	72.2	72.4	54.2	54.0	55.3	80.0	80.0	80.2	
	UniCoTT	Chain	93.4	93.4	93.3	82.2	82.6	82.0	93.6	93.4	94.4	
	UniCoTT	Tree	94.8	94.6	94.7	88.8	88.9	90.2	94.6	94.6	95.5	
	UniCoTT	Graph	96.8	96.8	95.9	84.9	84.6	85.9	94.2	93.9	94.7	

Experiment

Table 2: A performance comparison of various methods on the Multiple-Choice QA benchmark, with the best results emphasized in **bold**. The Base Model is the student network used for training. The results of using more pre-training language models as the base model are provided in Appendix A.4.

			CSQA		OBQA			QASC			
Base Model	Method	Structure	Acc.	F1	Ins.	Acc.	F1.	Ins.	Acc.	F1.	Ins.
	+None	_	81.6	68.6	57.4	75.9	65.7	52.8	84.8	55.8	24.2
	CoT	Chain	86.7	77.0	71.1	77.5	69.0	61.4	89.3	73.6	57.0
	SCOTT	Chain	88.7	80.2	77.3	80.8	71.0	64.4	86.4	64.5	53.8
BERT-base	DSbS	Chain	81.3	68.2	56.2	76.4	63.2	52.0	87.1	54.5	22.8
	UniCoTT	Chain	88.1	80.9	79.2	82.4	75.8	73.6	92.3	81.1	70.3
	UniCoTT	Tree	90.4	84.9	84.4	83.8	75.6	75.2	93.2	83.3	77.8
	UniCoTT	Graph	91.6	88.0	86.8	84.4	77.9	77.2	90.3	83.6	68.5
	+None	_	83.3	72.6	64.4	78.4	69.5	61.4	86.7	58.5	32.3
RoBERTa-base	CoT	Chain	86.7	77.7	71.0	84.4	78.3	74.4	90.9	75.4	60.3
	SCOTT	Chain	89.8	83.7	78.9	84.8	77.9	73.0	87.5	60.4	30.8
	DSbS	Chain	82.8	72.4	64.3	77.6	69.0	60.0	87.5	59.7	34.6
	UniCoTT	Chain	91.7	86.5	86.7	84.3	79.2	78.7	92.9	84.6	78.6
	UniCoTT	Tree	91.7	86.9	87.5	87.5	83.4	82.2	93.6	84.5	80.1
	UniCoTT	Graph	92.5	89.6	88.8	88.8	85.4	84.1	92.4	83.7	75.7

Experiment

Table 3: A performance comparison on the GLUE benchmark, with the best results emphasized in **bold**. I and II indicates using BERT-base and RoBERTa-base as the base model, respectively.

Base Model	Methods	Structure	CoLA	RTE	WNLI	MRPC	Average.
	+None	_	56.6	65.3	53.4	81.8	64.3
	СоТ	Chain	67.9	81.6	80.3	87.8	79.4
	SCOTT	Chain	81.1	91.7	91.6	92.6	89.3
BERT-base	UniCoTT	Chain	86.4	89.9	93.0	95.5	91.2
	UniCoTT	Tree	88.5	93.5	94.4	96.3	93.2
	UniCoTT	Graph	90.2	94.6	93.9	94.1	93.2
RoBERTa-base	+None	-	56.7	78.7	55.5	86.9	69.5
	CoT	Chain	69.6	82.3	81.2	71.3	76.1
	SCOTT	Chain	78.5	89.9	90.8	90.6	87.5
	UniCoTT	Chain	88.3	91.7	93.4	93.1	91.6
	UniCoTT	Tree	91.4	93.0	95.1	96.3	94.0
	UniCoTT	Graph	93.9	95.5	95.3	94.0	94.7

Conclusion

In this paper, we:

- Present a unified distillation framework, UniCoTT, designed for CoT with diverse reasoning structures.
- Propose an efficient method for generating CoT with diverse structures and its unified representation approach.
- Introduce a node-level supervised contrastive loss and structural consistency learning strategy, aimed at facilitating supervised learning and representation learning for structural knowledge transfer, respectively.
- Derive an upper bound for the structural representation error and achieve structural constraints by optimizing this upper bound.
- The experimental results show that UniCoTT can effectively improve the performance of SLMs on factual reasoning, multiple-choice QA, and NLU tasks.

Thank you! Q&A