From Pixels to Tokens: Byte-Pair Encoding on Quantized Visual Modalities ICLR 2025

Wanpeng Zhang¹, Zilong Xie², Yicheng Feng¹, Yijiang Li³, Xingrun Xing^{4,5}, Sipeng Zheng⁴, Zongqing Lu^{1,6}

¹PKU ²CUHK ³UCSD ⁴BAAI ⁵CASIA ⁶BeingBeyond

Background

- MLLMs struggle with effectively aligning visual and textual modalities
- Current approaches:
 - Late-fusion with specialized encoders: Complex alignment challenges
 - Early-fusion token-based: Lacks explicit structural information
- Text-only LLMs benefit from BPE tokenization but visual modalities lack equivalent

Theoretical Foundation

Proposition 1. For data generating processes described in either Scenario 1 or Scenario 2, as $m \to \infty$, the optimal cross-entropy loss among unigram model family $\Omega_{1-\text{gram}}$ satisfies

$$\liminf_{m \to \infty} \min_{Q \in \Omega_{1-\text{gram}}} \mathcal{L}_m(Q) \ge H(\pi) = \sum_{a \in \mathcal{C}} \pi(a) \log(\pi(a)). \tag{3}$$

In contrast, the optimal unconstrained cross entropy loss satisfies

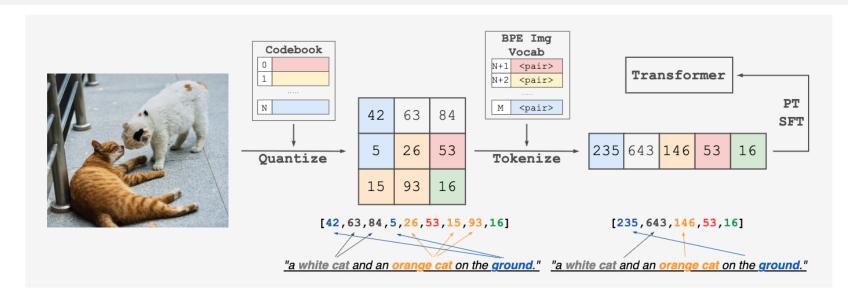
$$\lim_{m \to \infty} \min_{Q} \mathcal{L}_m(Q) = H_{\infty} \stackrel{\Delta}{=} -\sum_{a \in \mathcal{C}} \sum_{a' \in \mathcal{C}} \pi(a) P(a' \mid a) \log \left(P(a' \mid a) \right). \tag{4}$$

Proposition 2. For data generating processes described in either Scenario 1 or Scenario 2, assume that $\delta \stackrel{\triangle}{=} \min_{a,a' \in \mathcal{C}} P(a'|a) > 0$. Then there exists a tokenizer with a dictionary containing at most D tokens, along with an encoding function $\operatorname{enc}(\cdot)$ applied to X, such that

$$\limsup_{m \to \infty} \min_{Q \in \Omega_{1-\text{gram}}} \mathcal{L}_m(Q \circ \text{enc}(\cdot)) \le \frac{1}{1 - \varepsilon} H_{\infty}, \tag{5}$$

where $\varepsilon = \log(1/\delta)/(0.99 \log(D))$ and $D \in \mathbb{N}$ is an arbitrary constant that is sufficiently large.

Our Method



BPE Image Tokenizer:

- Step 1: Quantize image into initial token IDs using VQ-GAN (codebook size 8192)
- Step 2: Learn merged tokens based on frequency patterns (like text BPE)
- Step 3: Combine tokens into semantically meaningful units with structural information

Our Method

Information loss theoretical upper bound:

$$L_{bpe} \le (|D_{bpe}| - |D_{vq}|) \times (-p_{\min}\log(p_{\min})).$$

• For typical configuration: ~0.35% information loss, acceptable trade-off.

Our Method

Algorithm 4.1 BPE Image Tokenizer training procedure.

```
\triangleright v_0: initial vocab size, m: new vocab size, D: training data
 1: Input v_0, m, D.
                                                                                                        \triangleright v: current vocab size
 2: v \leftarrow v_0
 3: A \leftarrow \operatorname{zeros}(v \times v)
                                                                                                         \triangleright A: adjacency matrix
 4: V \leftarrow \emptyset
                                                                                                    \triangleright V: extended vocabulary
 5: for i \leftarrow 1 to m do
          A \leftarrow \text{UpdateMatrix}(D)
      (p, f) \leftarrow \text{MaxFreqPair}(A)
                                                                                                  \triangleright p: best pair, f: frequency
      if f = 0 then break
          end if
      V \leftarrow V \cup \{(p,v)\}
      D' \leftarrow \emptyset
11:
          for each d \in D do
12:
13:
               d' \leftarrow \text{Replace } p \text{ with } v \text{ in } d
               D' \leftarrow D' \cup \{d'\}
14:
      end for
15:
      D \leftarrow D'
16:
17: v \leftarrow v + 1
                                                                                                   > set next id for new token
18: end for
19: return V
```

Training Pipeline

- Base Model: Llama-3.1-8B
- Two-Stage Training Process:
 - PT (Pretraining):
 - Freeze original text embeddings
 - Train only visual embeddings
 - 595K images (CC-3M) + 558K (LCS)
 - SFT (Supervised Fine-Tuning):
 - Unfreeze all weights
 - 1.27M entries from LLaVA-OneVision Dataset
- Key Difference: Direct fusion of image modality without separate encoders

Experiment Results

	Training type	VQAv2	MMBench	\mathbf{MME}^p	\mathbf{MME}^c	POPE	VizWiz
LLM+VQ	SFT	51.1	35.9	972.3	231.8	73.8	43.1
	PT(full)+SFT	53.7	37.0	1037.2	261.4	75.3	44.2
	PT(freeze)+SFT	55.4	37.6	1054.5	277.0	76.0	45.3
LLM+VQ+BPE (Being-VL-0)	SFT	52.2	35.4	1029.7	269.6	76.3	45.3
	PT(full)+SFT	56.5	38.6	1144.6	284.3	77.3	45.8
	PT(freeze)+SFT	57.1	40.9	1223.5	307.1	79.0	46.0
Additional scaling (PT)	+RefCOCO(50.6K)	58.6	42.3	1257.4	314.3	79.8	47.1
	+AOKVQA (66.2K)	59.6	43.1	1288.1	321.4	80.4	47.5
Additional scaling (SFT)	+ShareGPT4o (57.3K)	60.2	43.7	1304.5	327.7	80.9	47.8
	+ALLaVA Inst (70K)	60.6	44.0	1316.2	331.0	81.3	48.2

- BPE Image Tokenizer consistently outperforms direct VQ approach
- Performance improves with vocabulary size up to 8K (balanced utilization)
- Model shows strong category-specific improvements (Existence: 145.0 vs 113.3)

Summary & Future Work

- First explicit tokenization of multimodal data like text-only LLMs
- Theoretical analysis validates benefits of tokenization for 2D data
- Significant performance gains with limited training data (0.1% of typical CLIP training)
- Future: Scale up data, apply to video, explore more sophisticated tokenization

Thanks!