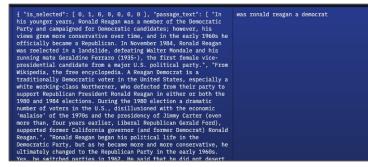


Multi-Field Adaptive Retrieval

Millicent Li, Tongfei Chen, Benjamin Van Durme, Patrick Xia



Motivation

Documents naturally have structure, but plenty of existing retrieval datasets do not.

Example from MS MARCO¹

What do we do if we have documents with structure?

Potential Solution

The simple solution is to use existing retrieval systems that encode directly a **single** document.

 But then we lose out on the inherent structure of the document, which can be a useful signal.

Introducing mFAR: Multi-Field Adaptive Retrieval

Our method enables:

```
Hybrid retrieval: combines the power of lexical
Retrieval across multiple "fields."
                                                      (word-level) and dense (semantic) scorers.
                                                      Question: What is the product about?
     "title": "Beating the King's Indian
                                                      Lexical: "Beating the King's Indian and
and Benoni Defense...",
                                                      Benoni Defense"
     "brand": "The House of Staunton",
     "reviews": [{reviewerID: 1234, ...}, ...]
                                                    Dense: "Chess strategy guide"
      "description": ...",
```

mFAR: Query Conditioning

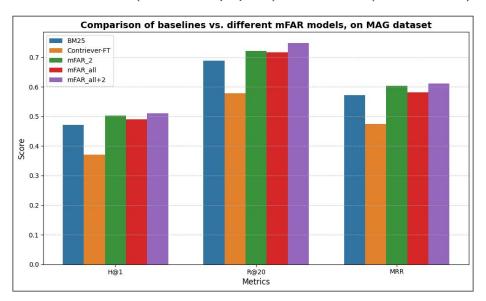
Are there any publications from Edmonds Community College on laser pumping methods that explore various emission spectra?

mFAR models

We include four baselines and train several types of mFAR models:

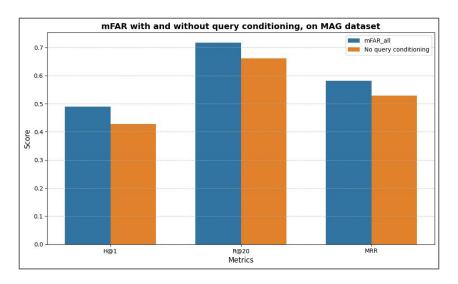
Baselines:

- BM25
- Contriever
- mFAR_{lexical}
- mFAR_{dense}


Models:

- \bullet mFAR₂
- mFAR_{all}
- mFAR_{all+2}

Datasets and Evaluation


We evaluate our model on STaRK¹, with various combinations of mFAR, on typical retrieval metrics.

STaRK contains 3 datasets: Amazon, MAG (academic papers), and Prime (biosciences).

Is Query Conditioning Necessary?

We find that vast majority of performance gains do come from query conditioning; without query conditioning, multiple fields and multiple scorers alone do not amount to much performance gain.

More specific analyses included in the paper!

Takeaways

We find that:

- A simple BM25 baseline/Contriever baseline is not enough.
- Hybrid retrieval outpaces models that are only dense or only sparse
- The flexibility of adding multiple fields improves performance, but it is not trivially simple to add them

Thank you!

Paper Link

Code

