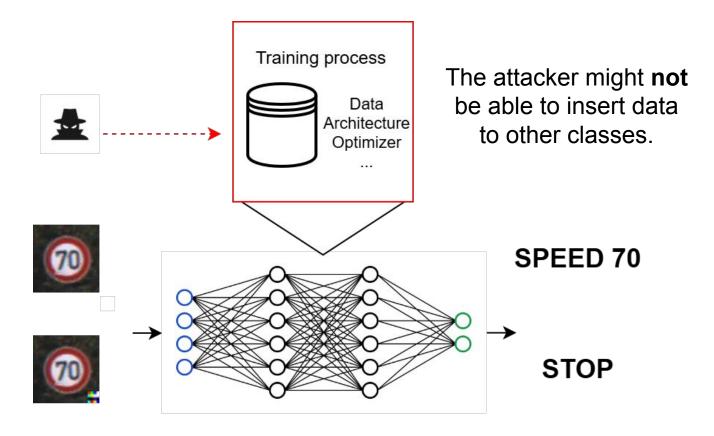


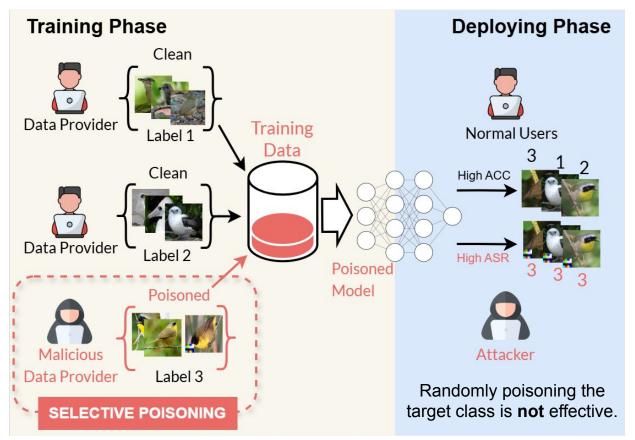
Wicked Oddities: **Selectively Poisoning** for **Effective** Clean-Label Backdoor Attacks

Quang H. Nguyen¹, Nguyen Ngoc-Hieu¹, The-Anh Ta³, Thanh Nguyen-Tang⁴, Kok-Seng Wong^{1,2}, Hoang Thanh-Tung⁵, Khoa D. Doan^{1,2}

Backdoor Attacks

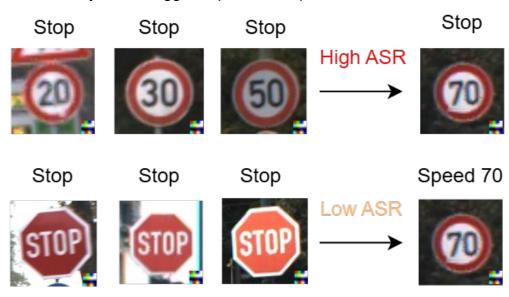


Our Threat Model



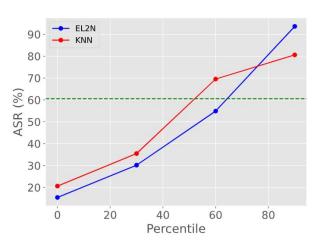
The Choice of Poisoned Samples

Have to rely on the trigger to predict "Stop".



Do not need the trigger to predict "Stop".

We rank and poison hard samples.



Poisoning **harder** samples → **higher** attack success rate.

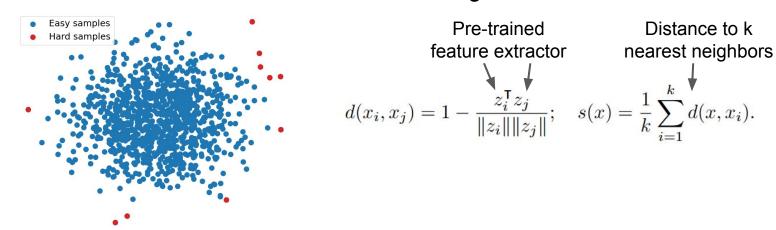
How to find hard samples with **limited** information?

Utilizing Surrogate Models

If there is no target model, we can use surrogate models to find hard samples.

Approach 1: Use pre-trained models.

- Intuition: Hard samples are far from other samples.
- Method: Measure the distance to nearest neighbors.

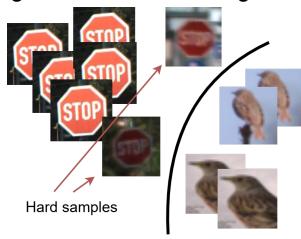


Utilizing Surrogate Models

If there is no target model, we can use surrogate models to find hard samples.

Approach 2: Train our own model.

- Intuition: Differentiate the target class from any other class is enough.
- Method: Train a surrogate model on the target class and OOD data.



The Importance of Selective Poisoning

Our strategy **significantly boosts** the attack success rate (even under distributional shift or partial data access).

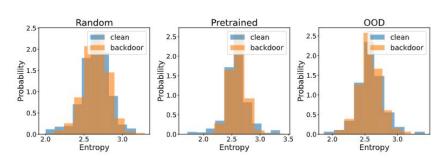
Model	Method	BadNets			Blended			SIG		
		5%	10%	20%	5%	10%	20%	5%	10%	20%
ResNet18	Random	30.81	45.01	78.28	28.94	37.55	44.26	50.28	60.54	78.45
	Self-supervised Models Supervised Models	86.24 90.01	91.68 92.14	98.84 99.26	44.64 47.68	52.90 60.86	66.45 67.81	76.35 81.65	80.59 85.42	86.45 90.49
	Multiple-class OOD Single-class OOD	75.57 82.34	81.27 80.75	98.47 91.37	43.40 42.99	56.89 57.29	61.68 62.60	65.11 72.93	80.76 79.07	88.79 87.18
VGG19	Random	63.24	78.39	79.55	17.32	23.84	34.36	22.28	45.54	67.57
	Self-supervised Models Supervised Models	81.44 83.43	82.60 89.61	93.11 87.70	30.74 22.86	42.23 38.84	55.34 54.99	46.65 47.89	70.23 74.38	81.93 80.07
	Multiple-class OOD Single-class OOD	79.69 75.36	88.44 81.01	86.78 89.68	29.35 30.49	38.39 40.58	49.24 51.60	50.81 57.24	65.80 72.35	78.28 79.04

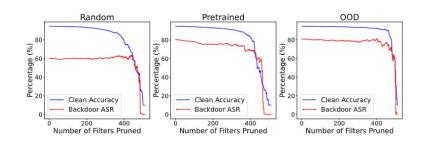
Poisoning easy samples makes strong attacks become weak.

	ASR
Narcissus + Easy samples	13.06
Narcissus + Random selection	56.16
Narcissus + Hard samples	89.65

Robust against Backdoor Defenses

Existing defenses that





detect the attack

or

mitigate the attack

are not effective.

Conclusion

- We study a novel threat model of clean-label backdoor attacks.
- We propose two sample selection strategies to boost the success rate.
- Our approach
 - significantly improve clean-label attacks
 - is robust against existing backdoor defenses
 - o can be combined with **any** clean-label trigger
 - still works in challenging scenarios.

THANK YOU!

Code:

Contact: Lab:

https://mail-research.com/

https://github.com/mail-research/wicked-oddities-backdoor

quanghngnguyen@gmail.com / khoadoan106@gmail.com