ICLR 2025

Bridging Jensen Gap for Max-Min Group Fairness Optimization in Recommendation

Chen Xu¹, Yuxin Li¹, Wenjie Wang², Liang Pang³, Jun Xu^{1*}, Tat-Seng Chua⁴

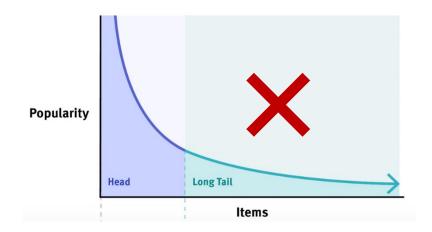
1 Gaoling School of Artificial Intelligence, Renmin University of China
2 School of Information Science and Technology, University of Science and Technology of China
3 Institute of Computing Technology, Chinese Academy of Sciences
4 NExT++ Research Center, National University of Singapore

- Motivation
- Method: FairDual
- Experiments
- Conclusion

Recommendation optimization objective:

$$\mathcal{L} = \min_{\hat{c}_{u,i}} - \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} c_{u,i} \log(\hat{c}_{u,i})$$

recommendation accuracy loss



Max-min fairness: Ensure that no group performs exceptionally poorly

s.t.
$$\max_{g \in \mathcal{G}} \sum_{u \in \mathcal{U}} \sum_{i \in L_K(u)} -\frac{\mathbb{I}(i \in \mathcal{I}_g)}{n_i m_g} c_{u,i} \log(\hat{c}_{u,i}) \le M, \qquad (1)$$

MMF constraint: loss of worst-off group g should at or smaller than M

Computational

Optimizing the objective

Batch training

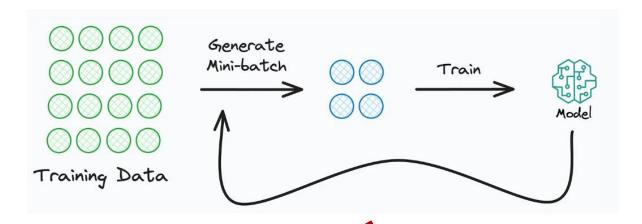
Resource are limited

$$\mathcal{L} = \min_{\hat{c}_{u,i}} - \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} c_{u,i} \log(\hat{c}_{u,i})$$

recommendation accuracy loss

s.t.
$$\max_{g \in \mathcal{G}} \sum_{u \in \mathcal{U}} \sum_{i \in L_K(u)} -\frac{\mathbb{I}(i \in \mathcal{I}_g)}{n_i m_g} c_{u,i} \log(\hat{c}_{u,i}) \le M ,$$
 (1)

MMF constraint: loss of worst-off group g should at or smaller than M



No!! It is biased

Can such constrained optimization problem be unbiased when using the batch training?

- The constraints make the objective become non-linear additivity
 - Break the independence of samples

$$\mathcal{L} = \min_{\hat{c}_{u,i}} - \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} c_{u,i} \log(\hat{c}_{u,i})$$
equivalence
$$\mathcal{L} = \min_{w \in \mathcal{W}} \mathbf{b}^{\top} (\hat{\mathbf{A}}^{\top} \mathbf{w})^{1+t}$$
s.t.
$$\max_{g \in \mathcal{G}} \sum_{u \in \mathcal{U}} \sum_{i \in L_K(u)} - \frac{\mathbb{I}(i \in \mathcal{I}_g)}{n_i m_g} c_{u,i} \log(\hat{c}_{u,i}) \leq M,$$

$$MMF \text{ constraint: loss of worst-off group } g \text{ should at or smaller than } M$$

$$(1)$$

$$J(B) = |\mathcal{L}^B - \mathcal{L}| = |\mathcal{L}^B - \min \mathbf{b}^{\top} f(\sum_{i=1}^{|\mathcal{U}|/B} \mathbf{e}_j)| \neq 0.$$

There is a bias (Jensen gap) when utilizing batch training!

Factors for influcing the Jensen gap: batch size and group size!

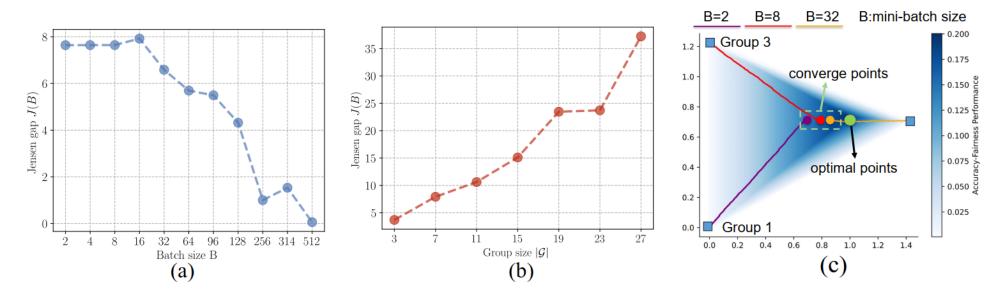


Figure 1: Loss converges simulation with 1000 users and 1000 items. Sub-figure (a) and (b) illustrate the distance away from the optimal point (*i.e.*, Jensen gap) *w.r.t.* mini-batch and group size, respectively. Figure (a) was conducted with the same group size (G=7) under different batch sizes, while Figure (b) was conducted with the same batch size (B=32) under different group sizes. Sub-figure (c) describes the converged trace under different batch sizes.

- Motivation
- Method: FairDual
- Experiments
- Conclusion

Introducing a weighting term to mitigate such a bias

Theorem 3. By introducing the dual variable μ , the dual form of the Equation (1) is

$$\mathcal{L}' = \min_{\hat{c}_{u,i}} - \sum_{u \in \mathcal{U}} \sum_{g \in \mathcal{G}} \sum_{i \in \mathcal{I}_g} c_{u,i} \log(\hat{c}_{u,i}), \tag{4}$$

$$where \, \boldsymbol{s}_g = 1 - \boldsymbol{\mu}_g \, and \, \boldsymbol{\mu} = \arg\min_{\boldsymbol{\mu} \in \mathcal{M}} \left(\max \sum_{u \in \mathcal{U}} \sum_{g \in \mathcal{G}} \boldsymbol{s}_g \sum_{i \in \mathcal{I}_g} c_{u,i} \log(\hat{c}_{u,i}) + \lambda r^*(\boldsymbol{\mu}) \right),$$

$$where \, r^*(\boldsymbol{\mu}) = \max_{\boldsymbol{w}_g \leq m_g} \left(\min_{g \in \mathcal{G}} m_g(\hat{\boldsymbol{A}} \boldsymbol{w})_g + \hat{\boldsymbol{A}}^\top \boldsymbol{w} \boldsymbol{\mu} / \lambda \right) = \sum_g m_g \boldsymbol{\mu}_g / \lambda + 1, \, \mathcal{M} = \left\{ \boldsymbol{\mu} \, \middle| \, \sum_{g \in \mathcal{S}} \boldsymbol{\mu}_g m_g \geq -\lambda, \forall \mathcal{S} \in \mathcal{G}_s \right\}, \text{ where } \mathcal{G}_s \text{ is the set of all subsets of } \mathcal{G} \text{ (i.e., power set).}$$

Weighting term, be updated each batch utilizing the dual mirror gradient descent!

Introducing a weighting term to mitigate such a bias

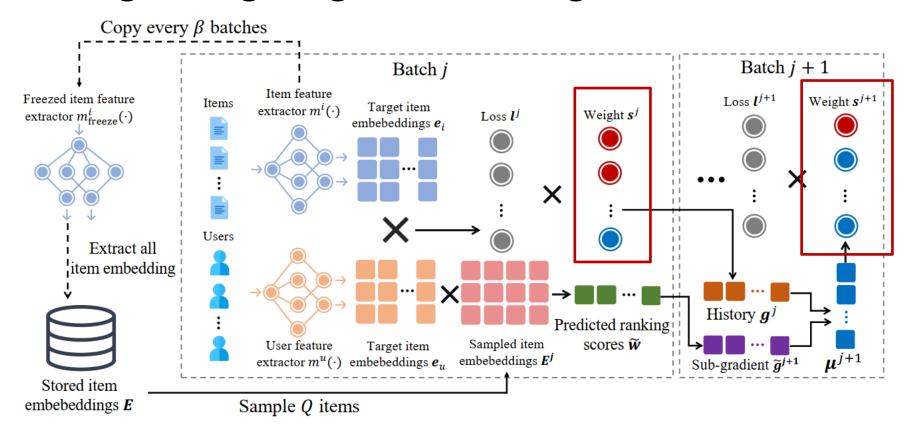


Figure 2: Overall workflow of FairDual under every two batches j and j + 1.

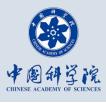


Algorithm

```
Algorithm 1: FairDual
```

15: **end for**

```
Require: Dataset \mathcal{D} = \{u, i, c_{u,i}\}, item-group adjacent matrix \boldsymbol{A}, dual learning rate \eta, trade-off
      coefficient \lambda, m_{\text{freeze}}^i(\cdot) updating step \beta, batch size B and sample item number Q and the weight
      m_q for each group g. \hat{A} = \text{diag}(A\mathbf{1})^{-1}A.
Ensure: The model parameters of m^i(\cdot), m^u(\cdot).
 1: for n = 1, \dots, N do
         Set \gamma_{1,q} = m_q, \forall g \in \mathcal{G}
         for j=1,\cdots,|\mathcal{U}|/B do
             if (n*|\mathcal{N}|/B+j)\%\beta=0 then
                 Copy parameters from m^i(\cdot) to m^i_{\text{freeze}}(\cdot) and get all item embedding \boldsymbol{E}
                  Initialize dual solution \mu = 0, and momentum gradient g = 0 and t = 0.
             end if
             Get sub-dataset \{u, i, c_{u,i}\}_{h=1}^{B} and user feature e_u and item feature e_i
             \mathcal{L}^j = [-c_{u,i}\log(\hat{c}_{u,i})]_{b=1}^B, \quad oldsymbol{s}^j = oldsymbol{1} - \hat{oldsymbol{A}}^joldsymbol{\mu}
 9:
                                                                                                   Weighting term
             Apply gradient descent based on loss (s^j)^{\top} \mathcal{L}^j
10:
             \widetilde{m{w}}_b = \sum_{k=1}^K (m{e}_{u_b}^	op m{E}^b)_{[k]}, orall b
11:
             [\widetilde{m{g}}^j = -(\hat{m{A}}^j)^{	op}\widetilde{m{w}} + m{\gamma}_j \quad , m{g}^j = lpha \widetilde{m{g}}^j + (1-lpha) m{g}, \quad m{g} = m{g}^j.
12:
                                                                                                                                 Mirror SGD for
             oxed{\gamma_j = \gamma_{j-1} - (\hat{A}^j)^{	op} \widetilde{w}, oldsymbol{\mu} = rg \min_{oldsymbol{\mu}_0 \in \mathcal{M}} \left[ (oldsymbol{g}^j)^{	op} oldsymbol{\mu}_0 + \eta \|oldsymbol{\mu}_0 - oldsymbol{\mu}\|_2^2 
ight]}
13:
                                                                                                                                 learn the weight
14:
          end for
```

The bias can be bounded

Theorem 4 (Bound on Jensen Gap). There exists H > 0 such that $\|\mu^j - \mu\|_2^2 \le H$ and function $\|\cdot\|_2^2$ is σ -strongly convex. Then, there exists L > 0, the Jensen gap of FairDual can be bounded as:

$$J(B) \le \frac{H}{\eta} + \frac{|\mathcal{U}|L|\mathcal{G}|^2}{B(1-\alpha)\sigma}\eta + \frac{L|\mathcal{G}|^2}{2(1-\alpha)^2\sigma\eta}.$$
 (10)

When setting learning rate $\eta = O(B^{-1/2})$, the bound of Jensen gap is comparable with $O(B^{-1/2})$.

- Motivation
- Method: FairDual
- Experiments
- Conclusion

Experiments



Outperform all the baselines in terms of accuracy and fairness!

Table 1: Performance comparisons between ours and the baselines on three datasets under best-performing BigRec backbones. The * means the improvements are statistically significant (t-tests and p-value < 0.05). The bold number indicates that the accuracy value exceeds that of all the baselines.

Models/Metrics		K = 5				K = 10		K = 20			
		NDCG (%)	MRR (%)	MMF (%)	NDCG (%)	MRR (%)	MMF (%)	NDCG (%)	MRR (%)	MMF (%)	
	UNI	1.02	0.79	1.63	1.50	0.98	2.33	2.16	1.16	2.94	
MIND	DRO	0.90	0.67	1.81	1.37	0.87	2.51	1.94	1.02	3.21	
	Prop	1.11	0.88	1.97	1.62	1.09	2.53	2.14	1.23	3.05	
	S-DRO	0.91	0.70	1.87	1.42	0.91	2.41	1.93	1.04	3.02	
	IFairLRS	0.87	0.66	2.21	1.27	0.83	2.91	1.78	0.97	2.86	
	Maxmin sample	0.98	0.75	2.25	1.49	0.96	1.71	2.19	1.15	3.13	
	Ours	1.15*	0.88	2.82*	1.69*	1.11	2.99*	2.28*	1.27*	3.39*	
	improv.(%)	3.60	0.00	25.33	4.32	1.83	2.75	4.10	3.25	5.61	
Book	UNI	2.99	2.79	8.44	3.19	2.87	8.32	3.44	2.94	8.15	
	DRO	2.94	2.72	8.39	3.15	2.81	8.29	3.37	2.87	8.10	
	Prop	2.64	2.45	8.68	2.83	2.53	8.30	3.05	2.59	8.01	
	S-DRO	2.61	2.44	8.37	2.80	2.52	8.21	3.06	2.59	8.07	
	IFairLRS	2.30	2.16	8.46	2.51	2.25	8.20	2.76	2.32	8.17	
	Maxmin sample	2.49	2.31	6.80	2.72	2.43	6.80	2.97	2.74	7.50	
	Ours	3.11*	2.88	8.90*	3.31*	2.96	9.00*	3.60*	3.04	8.89*	
	improv.(%)	4.01	3.23	2.53	3.76	3.14	8.17	4.65	3.40	8.81	

Experiments

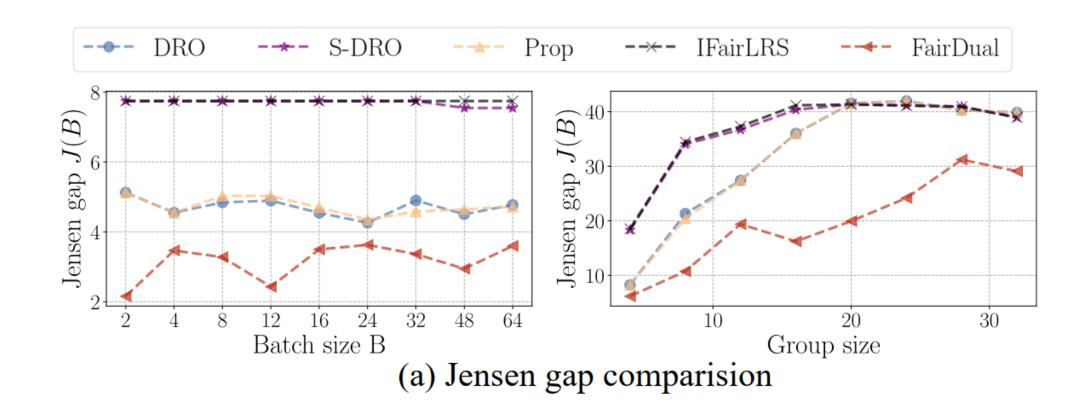
Outperform all the backbones in terms of accuracy and fairness!

Table 2: Performance comparisons between ours under other backbones on MIND dataset. The * means the improvements are statistically significant (t-tests and p-value < 0.05). The bold number indicates that the accuracy value exceeds that of all the baselines.

Models/Metrics		top-5				top-10		top-20			
Wiou	Triodolog Prietries		MRR (%)	MMF (%)	NDCG (%)	MRR (%)	MMF (%)	NDCG (%)	MRR (%)	MMF (%)	
	DRO	0.44	0.32	0.12	0.66	0.42	3.60	1.06	0.50	9.94	
	Prop	0.44	0.32	0.12	0.66	0.42	3.49	1.06	0.52	9.94	
	S-DRO	0.52	0.34	0.10	0.76	0.40	2.05	1.20	0.52	8.74	
NRMS	IFairLRS	0.40	0.28	0.69	0.62	0.36	4.20	0.96	0.44	10.58	
NKWIS	Maxmin sample	0.38	0.31	0.20	0.45	0.34	4.00	0.67	0.422	9.99	
	Ours	0.60*	0.40*	1.07 *	0.84*	0.46*	4.93*	1.28*	0.60*	11.35*	
	DRO	0.57	0.45	1.08	0.89	0.59	1.08	1.41	0.73	1.52	
	Prop	0.57	0.45	1.08	0.89	0.58	1.08	1.41	0.72	1.52	
RecFormer	S-DRO	0.57	0.45	1.20	0.91	0.60	1.15	1.46	0.73	1.62	
	IFairLRS	0.46	0.37	1.68	0.76	0.49	1.70	1.29	0.63	2.12	
	Maxmin sample	0.51	0.41	0.94	0.85	0.55	1.50	1.37	0.69	2.48	
	Ours	0.59*	0.45	1.88*	0.99*	0.60	1.94*	1.55*	0.75	2.58*	

Experiments

Smaller Jansen gap compared to other models!



- Motivation
- Method: FairDual
- Experiments
- Conclusion

Conclusion

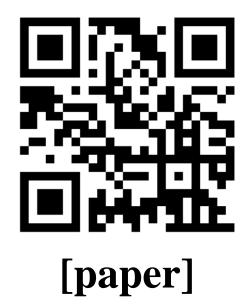
• Max-min group fairness contraints will introduce the Jensen gap during the objective optimization in recommendation

We show batch size and group size are two key factors for the Jensen gap

• We propose a model FairDual, which can efficiently and effectively mitigate the Jensen using the mirror SGD method

Pay attention to similar bias when apply the contrained optimization!

Thanks!



[codes]