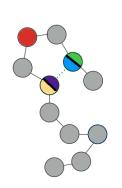
Fast uncovering of protein sequence diversity from structure

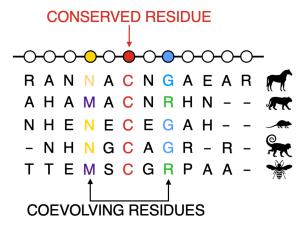
Luca Alessandro Silva, Barthelemy Meynard-Piganeau Carlo Lucibello, Christoph Feinauer Bocconi University, Genbio.AI

April 1, 2025

Protein inverse folding

Protein inverse folding: given a 3D structure X, find σ folding into X


- ► Given the task's complexity, recently deep-learning methods emerged.
- ▶ Models such as ESM-IF1, Protein-MPNN though only map a $X \to \sigma_X$.


Sequence-structure data imbalance

- ▶ Determined sequences ~ 200 millions, determined structures $\sim 200k \Longrightarrow 0.1\%$ of sequences have a determined structure.
- ▶ Mapping $X \to \sigma_X$ focuses on a very small part of sequences.
- ▶ Many proteins come from a common ancestor ⇒ their sequences have some very conserved regions.
- \blacktriangleright We can cluster such sequences \Longrightarrow protein families.
- ► Such sequences evolve constrained by they function and hence structure.
- ► Crucial many-to-one nature of inverse folding

Protein Families

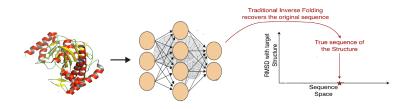
Function/structure conservation constraint evolution of **homologues** \Longrightarrow statistical patterns in MSA.

Pairwise models

lacktriangleq MSA has long-range correlations \Longrightarrow need a **global model**

▶ Probability of a sequence σ_i in a MSA is

$$p(\sigma_i|J,h) = \frac{1}{Z(J,h)} \exp \left\{ -\left[\sum_{i < j} J_{ij}(\sigma_i, \sigma_j) + \sum_i h_i(\sigma_i)\right] \right\}$$

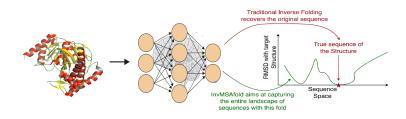

- ► Couplings $J \in \mathbb{R}^{L \times q \times L \times q}$. $J_{i,j}(a, b)$ describe propensity of amino acids a, b to co-appear at position i, j.
- ▶ Fields $h \in \mathbb{R}^{L \times q}$. $h_i(a)$ describe the marginal propensity of an amino acid a to appear at position a.
- ► Potts models can replicate first and second order patterns of MSA

InvMSAFold architecture

- ▶ We propose a novel architecture, **InvMSAFold**, which forces the model to learn this variability
- ightharpoonup InvMSAFold outputs the parameters of a light-weight low-rank approximation of the couplings J

$$J_{i,j}[a,b] = \frac{1}{\sqrt{K}} V_i[a]^{\top} v_j[b],$$

trained on the augmented dataset (X, M_X) .

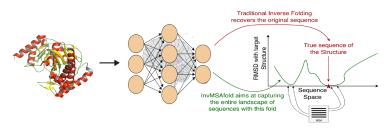


InvMSAFold architecture

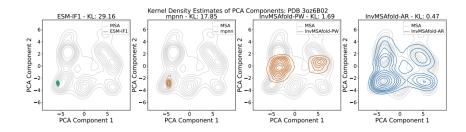
- ▶ We propose a novel architecture, **InvMSAFold**, which forces the model to learn this variability
- ightharpoonup InvMSAFold outputs the parameters of a light-weight low-rank approximation of the couplings J

$$J_{i,j}[a, b] = \frac{1}{\sqrt{K}} V_i[a]^{\top} v_j[b],$$

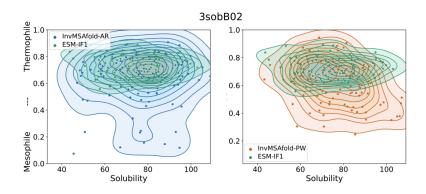
trained on the augmented dataset (X, M_X) .



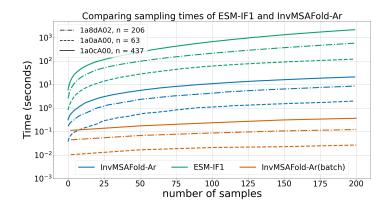
InvMSAFold architecture


- ▶ We propose a novel architecture, **InvMSAFold**, which forces the model to learn this variability
- ightharpoonup InvMSAFold outputs the parameters of a light-weight low-rank approximation of the couplings J

$$J_{i,j}[a,b] = \frac{1}{\sqrt{K}} V_i[a]^{\top} v_j[b],$$


trained on the augmented dataset (X, M_X) .

PCA plots


Protein property sampling

Sampling speed at generation

ESM-IF1, Protein-MPNN can be very expensive at inference

- ▶ Need $\Theta(L)$ passes through the transformer
- ► Inv-MSAFold-AR needs just **one**!

Thank you for you attention!

- ► Paper available at: https://openreview.net/forum?id=1iuaxjssVp
- ► Hope to see you all at the poster presentation: Fri 25 Apr 7 p.m. PDT 9:30 p.m. PDT!