BICEC: Attachable Classification-Based Intelligent Control for Sustainable Computer Vision Systems

and Research

Jonathan Burton-Barr 12, Deepu Rajan 1, Basura Fernando 21

¹ NTU College of Computing and Data Science, ² A*STAR Centre for Frontier AI Research

Motivation

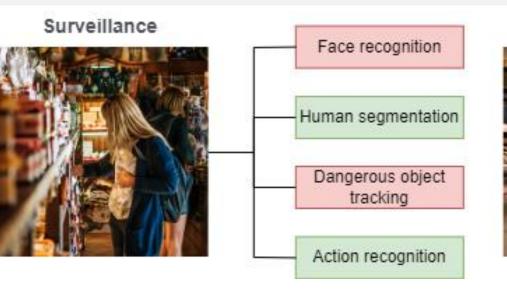
Sustainable AI: Identifying irrelevant inputs enables input skipping, leading to reduced computational load and energy consumption

Rising inference costs: The accumulated and individual inference costs of AI is increasing

Modular systems: Fine-grained control over system components can improve efficiency, flexibility, and sustainability

System Control via Intelligent Methods

- Intelligent control has proven effective in reducing resource usage in non-intelligent systems
- It is important to regulate multi-model Al systems, where redundant processing creates excessive consumption
- **BICEC** (Binary Image Classification Evaluative Controller) and its predecessor **SICEC** [1], initiates a line of research into intelligent redundancy reduction
- **BICEC**: An attachable controller which learns activation **conditions** → condition present → model receives input



Task and Data

Input Relevance Task (IRT): Human-centric task with four base functions (IRT-B) and two extended functions (IRT-E)

We reuse datasets from the system pre-trained models. Since BICEC uses binary, independent classification, each branch only requires positive and negative examples.

Training

Phase 1 Base creation

Split EfficientNet-B0 blocks into 1–5 (shared base) and block 6 (branch-specific). Load pre-trained EfficientNetV2-B0 weights. During training:

- Branches update their own layers independently
- Shared base updates via combined loss

Phase 2 Branch adaption

Set a tolerance threshold (α) for accuracy drop. For each branch:

- Find minimal width/depth maintaining accuracy ≥ (baseline $-\alpha$)
- Initialize scaled branch with weights from Phase 1 (uniform element selection [3])

Branch addition

Integrate new branches for new system vision models:

- **Step**: Train new branch (shared base frozen)
- Pull: Freeze new branch, update shared base using combined loss of all branches

Future Changes

- Switching to vision transformer backbone
- Expanding the rule set
- Generalized model relevance
- Testing more multi-model systems

Citations

[1] Burton-Barr, J., Fernando, B., & Rajan, D. (2024). Activation Control of Vision Models for Sustainable Al Systems. IEEE Transactions on Artificial Intelligence. [2] Tan, M., & Le, Q. (2021, July). Efficientnetv2: Smaller models and faster training. In *International conference on*

machine learning (pp. 10096-10106). PMLR.

[3] Xu, Z., Chen, Y., Vishniakov, K., Yin, Y., Shen, Z., Darrell, T., ... & Liu, Z. (2023). Initializing models with larger ones. arXiv preprint arXiv:2311.18823.

BICEC example activations.

IRT Functions and Activation Conditions

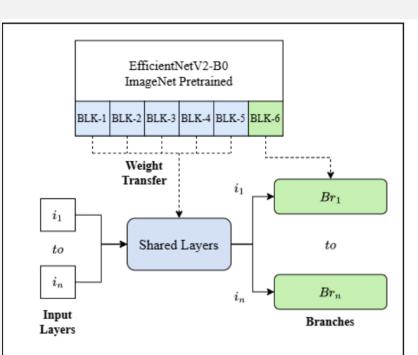
Ref	Function	Activation Condition
M 1	Object Detection	Animates
M2	Segmentation	People
M3	Face Detection	Faces
M 4	Pose Detection	3+ People
M5	Action Recognition	Call, Text, Eat, Drink
M6	Segmentation	Clothing Accessories

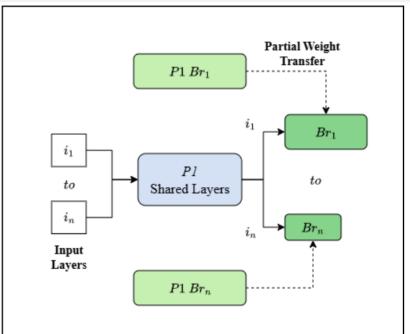
AI Vision Systems

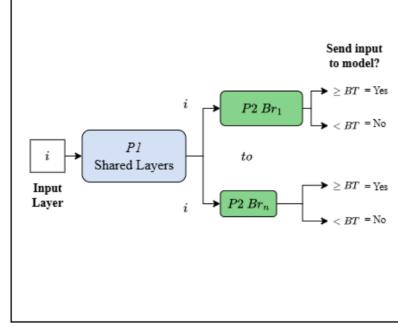
- 1. We may wish to use multiple domains
- 2. Available models may collaboratively be able to perform the AI system requirements
- 3. It may be difficult to create a single model that encapsulates all functionalities
- 4. Function-specific modulation may enhance system performance

Branched Binary Classification Network

- Backbone: Built on EfficientNetV2 [2] lightweight design prevents bottlenecks; optimized for both width and depth scaling.
- **Activation conditions**: BICEC learns when model-specific conditions are present in the input.
- Branched architecture: Enables precise learning of individual model conditions and forms the basis for BICEC's adaptive, expandable design.
- Binary threshold: Tunable after training to control model activation sensitivity.







(a) *Phase 1*: Base Creation.

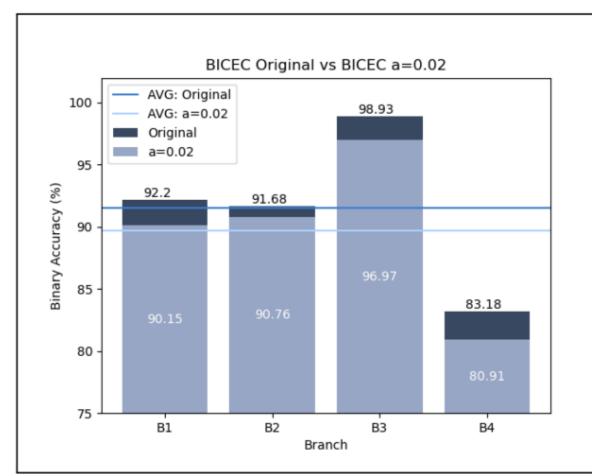
(b) Phase 2: Branch Adaptation.

(c) Final Model.

Main Results

Correct and Incorrect Model Activation (CMA / IMA): How often a BICEC branch correctly or incorrectly activates a model

Branch accuracy before and after branch adaption.



BICEC model size and GFLOPS after scaling: Increasing α enables lower BICEC size which can alleviate system bottlenecks.

_								
	a	Br_1	Br_2	Br_3	Br_4	Model Size	GFLOPs	Acc (%)
	Orig.	1.0	1.0	1.0	1.0	19.50M	2.591	91.50
	0.005	0.9*	0.9	0.9*	0.3	13.03M	2.055	90.90
	0.010	0.9	0.7	0.7	0.2	8.39M	1.706	90.54
	0.015	0.9	0.6	0.3	0.3	6.55M	1.520	90.02
	0.020	0.4	0.4	0.3	0.2	2.47M	1.181	89.70

Adjusting binary threshold: Setting a lower binary threshold improves the chance that both correct and incorrect models will be activated.

BT	CMA	IMA	Accuracy
0.5	86.43%	8.16%	89.70%
0.25	90.98%	15.15%	88.45%
0.125	93.26%	21.06%	86.60%
0.0625	94.55%	27.42%	84.01%

Branch addition results: Accuracy (A), Network (Net), Branch (Br), Branch after scaling (Br-S). We observed branch addition also improved the performance of BICEC's prior branches. We note that accuracy, CMA, and scale (and thus overall network size), as with Br₁ to Br₄, are strongly influenced by the activation condition.

	Scale	$\Delta Params$	ΔGFLOPs	Net A	Br A	Br-S A	Net CMA	Br CMA
IRT-E T5	0.2	+99.2K	+0.01	+0.12%	90.76%	89.55%	-0.22%	90.00%
IRT-E T6	0.1	+10.2K	+0.003	+0.66%	99.39%	99.09%	+0.79%	99.39%

Average energy and inference costs per model: This is the average cost per input, standard shows the IRT vision systems without BICEC. For our IRT we found a total model energy consumption reduction of 52.1% and total inference time reduction of 54.7%.

Inference (ms)						Energy (W)						
	M1	M2	M3	M4	M5(E)	M6(E)	M1	M2	M3	M4	M5(E)	M6(E)
Standard	17	33	13	12	46	20	1.18	0.86	0.45	0.88	0.38	0.67
COCO-Val	9.1	17.1	3.6	4.1	8.5	6.0	0.63	0.45	0.13	0.30	0.07	0.20
Movie	10.5	20.0	9.1	2.3	24.6	7.4	0.73	0.52	0.32	0.17	0.20	0.25
Y-VLOG	10.9	22.6	7.5	4.3	17.9	5.9	0.76	0.59	0.26	0.31	0.15	0.20

Individual branch attention plots: We see each branch focusing on different but activation condition relevant information within the image.

