TDRI: Two-Phase Dialogue Refinement and Co-Adaptation for Interactive Image Generation

Yangfan He, Yuheng Feng, Jianhui Wang, Kun Li, Yijin Wang, Haoyuan Li, Sida Li, Yinghui Xia, TIANYU SHI, Miao Zhang

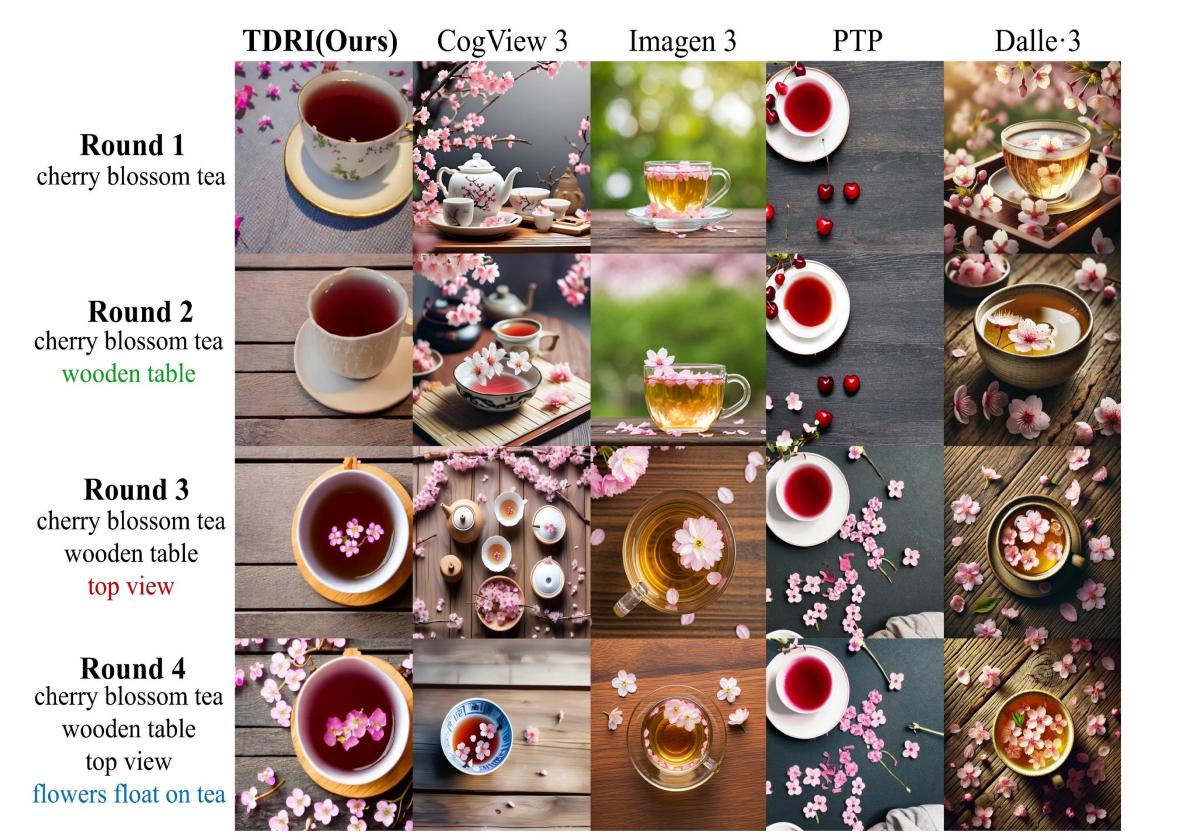
22061300002@stu.xidian.edu.cn ty.shi@mail.utoronto.ca edward.yang@autoagents.ai

Introduction

Motivation and Goal

- Text-to-image models struggle with ambiguitiesin user prompts and understanding user intent
- Non-expert users without prompt engineeringtraining face challenges in getting desired results
- Multiple iterations are typically needed toachieve satisfactory outputs

Our Approach: TDRI Framework


• A two-phase dialogue system that refines image outputs through iterative feedback

Experiment Results

Experiment	Key Metrics	Main Results
Text-to-Image Alignment Comparison	CLIP/BLIP scores, Human Voting	TPR (0.93/0.98/0.385) outperformed GPT-4 representation (0.92/0.151)
Multi-dialog Performance	CLIP/BLIP similarity scores across rounds	TDR reached 94.7% compared to 84% for GPT-4
Attend-and-Excite Performance	Usage frequency, T2I similarity improvement	SD-1.4 improved from 0.728 to 0.804 (CLIP)
User Perception	Survey results	Most users found ideal results by Round 5 (21.1%)
Image Editing vs. From Scratch	Consistency, Satisfaction,	Image editing (0.88, 90%, 9 min) outperformed generation from scratch
Simple vs. Complex Prompts	Success rate, CLIP score, Human voting	Simple prompts (92%, 0.95, 87%) significantly outperformed complex
Model Size Comparison	Satisfaction, CLIP score, Computation time	7B model (90%, 0.83, 15 min) showed best quality 3B model (78%, 0.77, 8 min) was faster

Proposed Framework for TDRI U-Net → → Pose Estimator → Do you have a specific posture X_{T-1} requirement for your parrot? (a) Phase 1: Initial Generation Phase Pose $Pose'_1$ Parrot wrapped in a soft thick blanket. User Feedback Ambiguity Score \leftarrow VLM \underline{DPO} $A\&E^{P_t}$ Output x_0 Objective: Diffusion $r_t < \tau$ $CLIP(I_t, P_t)$ Aesthetics This parrot needs to be cuter. \bullet Transparent sleeves. $A_0 \mid F_R$ Output x_1 (b) Phase 2: Interactive Refinement Phase

Comparison Effect

Key Contributions

- Specialized human-machine interactiontechniques for interactive image generation
- A two-phase dialogue methodology combiningexternal user interactions with internal optimization processes
- Demonstrated applicability across variousimage generation tasks

If you have any questions, please feel free to contact us