

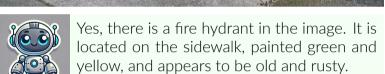
SpurLens: Finding Spurious Correlations in Multimodal LLMs

Parsa Hosseini*, Sumit Nawathe*, Mazda Moayeri, Sriram Balasubramanian, Soheil Feizi

University of Maryland College Park

Problem Motivation

- Spurious bias is the tendency to rely on correlations between non-essential input attributes and target variables for prediction.
- This problem has been extensively studied in unimodal models for object detection/classification problems.
- We introduce *SpurLens*, a pipeline to automatically find and measure spurious correlations in MLLMs.
- We show that spurious biases persist in modern MLLMs for the object detection task, and identify spurious cues for COCO and HardImagenet classes.



Is there a fire hydrant in the image?

With Spurious Cue

Without Spurious Cue

No, there is no fire hydrant in the image.

GPT-40 Failures Cases

The following are examples from COCO where GPT-40 incorrectly answers an object detection question because the image lacks a spurious feature (identified by SpurLens).

Q: Is the person riding a motorcycle? The person in the image is riding a

Object: Bench

Spurious Cue Missing: Grass

Q: Do you see a red bench?

I can't see a red bench in the image

you've shared. The focus appears to

be on the trains and the station setup.

scooter, not a motorcycle.

Q: Do you see a bus in the image? I see a traffic jam with several yellow

taxis ... but I can't specifically identify

Object: Book

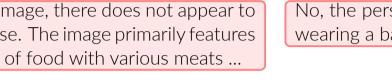
Q: Determine if there is a book in the

In the image, there does not appear to

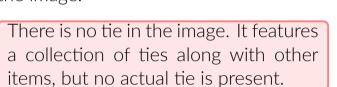
be a book ... none of these items re-

image. Explain.

semble a book.


Q: Is there a vase in the image? Explain.

In the image, there does not appear to be a vase. The image primarily features a plate of food with various meats ...


Q: Is the person wearing a backpack?

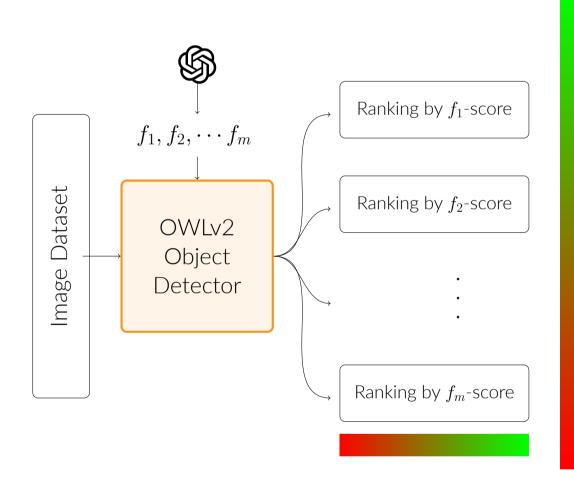
No, the person does not appear to be wearing a backpack.

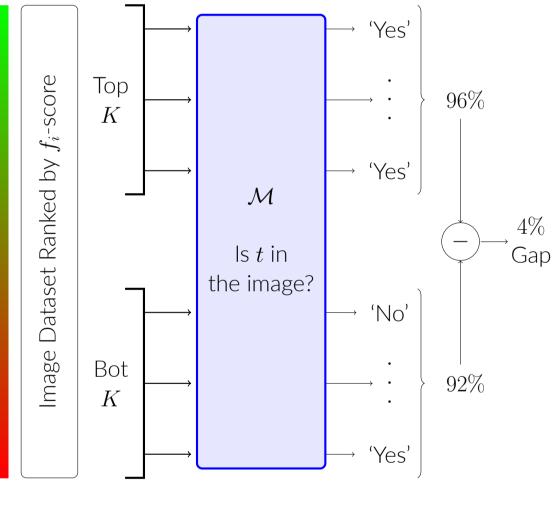
Q: Determine whether there is a tie in the image.

Q: Do you see a traffic light outside the window?

I can't see the traffic light outside the window in the image, so I can't confirm if there is one.

SpurLens Pipeline


Dataset


Begin with a large dataset $\{\mathcal{I}_j\}_{j=1}^N$ of images of object t, and an MLLM \mathcal{M} to analyze.

(1) Proposing Spur. Features Ask GPT-4 to list elements that commonly appear with t.

Object Detection Scoring Pass each image \mathcal{I} through the OWLv2

open-set object detector. For each spurious feature f_i , let the f_i -score of \mathcal{I} be the max confidence score of a bounding box tagged f_i returned by OWIv2. We rank all images by each feature score f_i .

(3) Computing Spurious Gaps For each feature f_i , take images with the

top-K and bottom-K f_i -scores,ask the $\mathcal M$ if it sees t in the image, and elicits a Yes/No response.

Define the f_i Gap as the difference in accuracy on the top-K and bottom-K images in the f_i ranking.

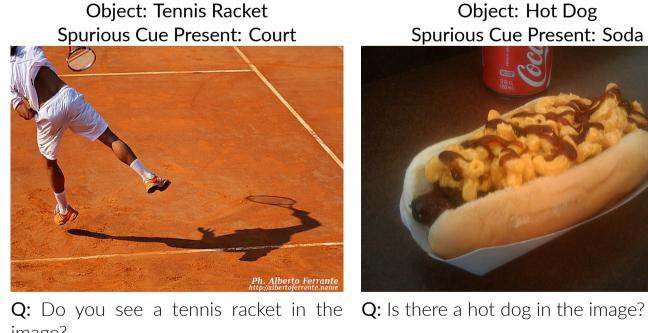
Since we have many potential spurious features, we choose the one with the largest Gap as the SpurLens spurious feature for t.

Examples of SpurLens Spurious Features

The following are examples from COCO where open-source model answer object detection questions. When the spurious features identified by SpurLens are present, the model answers correctly; when not present, the model does not see the target object.

Object: Bus Spurious Cue Present: Curb

Q: Determine whether there is a bus in the image.


Qwen2VL: Yes, there is a bus in the image.

Object: Bus

Spurious Cue Missing: Curb

the image.

image.

Qwen2VL: Yes, there is a tennis racket in the image.

Object: Tennis Racket

Spurious Cue Missing: Court

Q: Determine whether there is a bus in **Q:** Do you see a tennis racket in the **Q:** Is there a hot dog in the image?

Qwen2VL: No, there is no bus in the Qwen2VL: No, there is no tennis racket in the image.

LLaVA-v1.6: Yes, there is a hot dog in the image. It is placed in a bun and topped with macaroni and cheese...

Object: Hot Dog

Spurious Cue Missing: Soda

LLaVA-v1.6: No, there is no hot dog in

the image. The image shows a variety

of sandwiches and pastries displayed

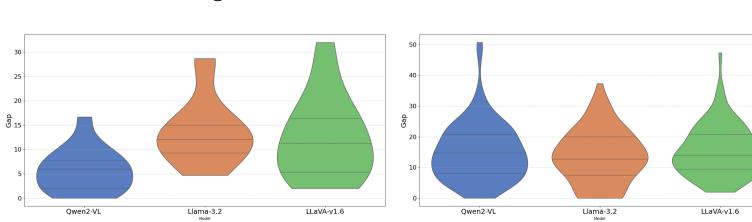
in a bakery or deli case.

Object: Cake

Q: Is there a cake in the image? Qwen2VL: Yes, there is a cake in the image.

Object: Cake Spurious Cue Missing: Candle

Q: Is there a cake in the image? **Qwen2VL:** There is no existence of a


cake in the image description.

Experimental Results

We evaluated 3 open-source models on two dataset: 15 HardImagenet classes, and 79 COCO classes. For each class, we use K=50to compute spurious gaps, and choose the cue with the largest Gap. The classwise-averaged results are below:

Dataset	HardImageNet			COCO		
Model	$\overline{Acc_s}$	Acc_c	Gap	$\overline{Acc_s}$	Acc_c	Gap
Qwen2-VL Llama-3.2 LLaVA-v1.6	92.5%	80.2%	12.3%	84.6%	70.4%	14.3%

The class-wise distribution of the Spurious Gap for HardImagenet (left) and COCO (right) classes:

Main Takeaways:

- When spurious cues are absent, performance decreases across all models.
- The effect of spurious cues is highly class-dependent
- SpurLens finds spurious features in nearly all image classes.

ICLR SCSL 2025 Email: phoseini@umd.edu