

DEEP CLUSTERING USING ADVERSARIAL NET BASED CLUSTERING LOSS

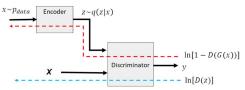
Kart Leong Lim A*STAR

1.1 Literature - Different strategies of using Adversarial net

Method	Adversarial net	Task X
	Is x from the ground truth or randomly generated?	
GAN	$\begin{cases} \text{if } x \sim p(\text{data}), \ T = 1\\ \text{elseif } x \sim p(q), \ T = 0 \end{cases}$	$x \sim p(data)$
	$\left\{ \text{ elseif } x \sim p(g), \ T = 0 \right.$	
	Is z from a Gaussian prior?	
AAE	$\begin{cases} \text{if } z \sim \mu + \sigma \cdot \mathcal{N}(0, 1), \ T = 1 \\ \text{elseif } z \sim q(z \mid x), \ T = 0 \end{cases}$	$z \sim p(z)$
	elseif $z \sim q(z \mid x), T = 0$	
	Does z fall along the assigned subspace?	
DASC	(if $z \sim p(\psi^*)$, $T = 1$	$z \sim p(\psi^*)$
	$\begin{cases} &\text{if } z \sim p(\psi^*), \ T = 1\\ &\text{elseif } z \sim p(\hat{\psi}), \ T = 0 \end{cases}$	10,7
DCAN	Does z belong to the assigned cluster?	
	$\begin{cases} \text{if } z \sim p(z \mid \theta^*), \ T = 1\\ \text{elseif } z \sim q(z \mid x), \ T = 0 \end{cases}$	$z \sim p(z \mid \theta^*)$
	elseif $z \sim q(z \mid x), T = 0$	

1.2 Adversarial net based "X"

Their encoder-discriminator path is common, but discriminator input X is different.

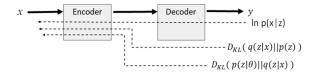


1.3 Proposed DCAN - Adversarial net based "Deep Clustering"

$$\begin{split} L_{DCAN} &= \left\{ \frac{1}{N} \sum_{n=1}^{N} \underset{x^{(n)} \sim p_{data}}{E} \left[\ln \left(1 - D \left(G(x^{(n)}) \right) \right) \right] \right\}_{T=0} \\ &+ \left\{ \frac{1}{N} \sum_{n=1}^{N} \underset{z^{(n)} \sim p(z|\theta^{*})}{E} \left[\ln D \left(z^{(n)} \right) \right] \right\}_{T=1} \end{split}$$

2. Relating Deep Clustering to Adversarial Net using Lemmas1 and Lemma2

2.1 Lemma1 - Deep clustering as JSD loss



VAE based deep clustering has the loss functions at encoder and decoder as shown

$$\mathcal{L}^{VAED} = \mathcal{L}^{VAE} - \lambda_3 \cdot D_{KL} \left(p(z_n \mid \theta) \parallel q(z_n \mid x_n) \right)$$

Deep clustering loss refers to the KLD between clustering and encoder $% \left(1\right) =\left(1\right) \left(1$

$$D_{KL}\left(\ p(z\mid\theta)\parallel q(z\mid x)\ \right)$$

Alternative, we can represent deep clustering loss as the JSD between two KLDs

$$\begin{split} D_{JS}\left(\left.p(z\mid\theta\right)\parallel q(z\mid x)\right.\right) \\ &= \frac{1}{2}D_{KL}\left(p\parallel\frac{p+q}{2}\right) + \frac{1}{2}D_{KL}\left(q\parallel\frac{p+q}{2}\right) \end{split}$$

2.2 Lemma2 – Adversarial net as JSD based deep clustering loss

However, no closed-form for JSD due to mixture distribution $\frac{p+q}{2}$

Instead, we can bypass JSD closed form, using adversarial net

$$\begin{split} &= \sum_{\substack{z \sim p(z|\theta^*) \\ z \sim p(z|\theta^*)}} \left[\ln D(z) \right] + \sum_{\substack{x \sim p_{data} \\ z \sim p(z|\theta^*)}} \left[\ln D(z) \right] + \sum_{\substack{x \sim p_{data} \\ z \sim p(z|\theta^*)}} \left[\ln D(z) \right] + \sum_{\substack{x \sim q(z|x) \\ }} \left[\ln \left(1 - D\left\{z\right\} \right) \right] \end{split}$$

Adversarial net approaches JSD at optimum, as below

$$\begin{split} \boldsymbol{LHS} &: E_{z \sim p} \left[\ln D(z) \right] + E_{x \sim p_{data}} \left[\ln \left(1 - D \left\{ G(x) \right\} \right) \right] \ s.t. \ \left\{ D = \frac{p}{p+q} \right\} \\ &= E_{z \sim p} \left[\log D(z) \right] + E_{z \sim q} \left[\log \left(1 - D(z) \right) \right] \ s.t. \ \left\{ D = \frac{p}{p+q} \right\} \\ &= E_{z \sim p} \left[\ln \frac{p}{p+q} \right] + E_{z \sim q} \left[\ln \frac{q}{p+q} \right] \\ &= \int_{z} p \ln \frac{p}{p+q} + q \ln \frac{q}{q+q} \ dz \end{split}$$

$$\begin{aligned} & \boldsymbol{RHS} : D_{JS} \left(p \parallel q \right) = \frac{1}{2} \int p \ln \frac{2 \cdot p}{p+q} + q \ln \frac{2 \cdot p}{p+q} \ dz \\ &= \frac{1}{2} \int_{z} p \left\{ \ln \frac{p}{p+q} + \ln 2 \right\} + q \left\{ \ln \frac{q}{p+q} + \ln 2 \right\} \ dz \end{aligned}$$

$$LHS \le 2RHS - 2\log 2.$$

3. Training DCAN

Discriminator weight update

$$\Delta w_{\phi} = \frac{\delta}{\delta w_{\phi}} \left\{ \frac{1}{N} \sum_{n=1}^{N} \underset{x^{(n)} \sim p_{data}}{E} \left[\ln \left(1 - D \left(G(x^{(n)}) \right) \right) \right] \right\}$$

$$\Delta w_{\phi} = \frac{\delta}{\delta w_{\phi}} \left\{ \frac{1}{N} \sum_{n=1}^{N} \underset{z^{(n)} \sim p(z|\theta^{*})}{E} \left[\ln D \left(z^{(n)} \right) \right] \right\}$$

Encoder weight update

$$\Delta w_{\rho} = \frac{\delta}{\delta w_{\rho}} \left\{ \frac{1}{N} \sum_{n=1}^{N} \underset{x^{(n)} \sim p_{data}}{E} \left[\ln \left(1 - D \left(G(x^{(n)}) \right) \right) \right] \right\}$$

Cross entropy loss

$$D = y^T (1 - y)^{1 - T}$$

4. Experimental Results

Table 2: ACC Benchmark				
Approach	MNIST	Reuters10k	CIFAR10	
ABC Song et al. (2013)	0.760	0.7019	0.435	
DEC Xie et al. (2016)	0.843	0.7217	0.469	
DC-GMM Tian et al. (2017)	0.8555	0.6906	-	
AAE Makhzani et al. (2016)	0.8348	0.6982	-	
IMSAT-RPT Hu et al. (2017)	0.896	0.719	0.455	
KINGDRA Gupta et al. (2020)	0.985	0.705	0.546	
DCAN (proposed)	0.8565	0.7867	0.5844	