

DoMiNO: Down-Scaling Molecular Dynamics with Neural Graph Ordinary Differential Equations

Authors: Fang Sun, Zijie Huang, Yadi Cao, Xiao Luo, Wei Wang, Yizhou Sun

Presenter: Prof. Yizhou Sun

Computer Science Department, UCLA

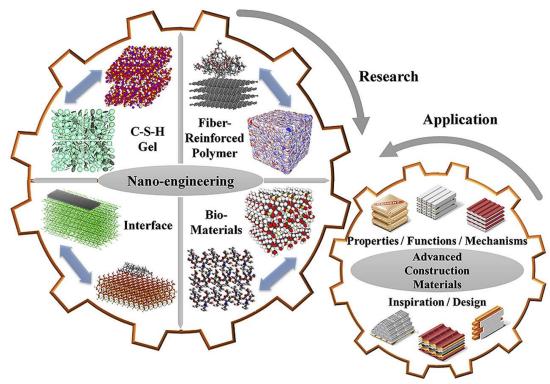
Date: Apr. 27, 2025

Molecular Dynamics (MD) Prediction

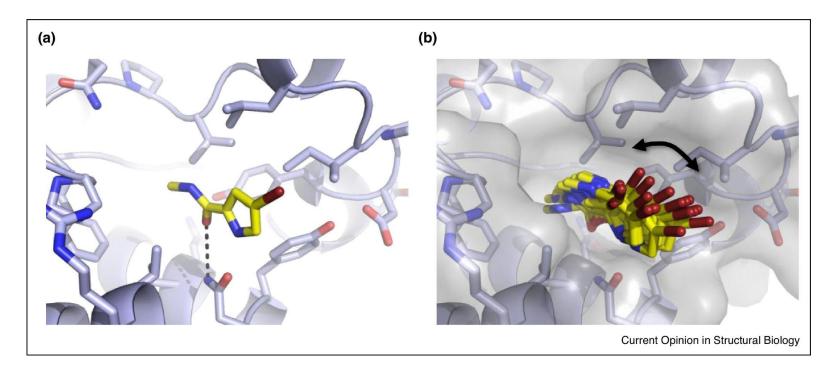
- A computer simulation method for analyzing the physical movements of atoms and molecules.
- Times-series task formulation: Predict the atom trajectories $r_i(t)$, $i=1\dots N$ for any desired time point t.

2

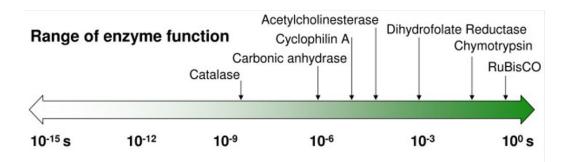
Why MD prediction? — Material Science



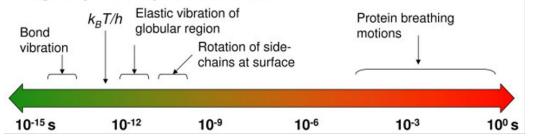
Why MD prediction? — Drug Design



From the multi time-scale perspective



Range of protein dynamical events



• Protein folding: $10^{-3} s$

• Enzyme Reaction: $10^{-8} \sim 10^{-7} s$

Diffusion Limit: 10⁻⁹ s

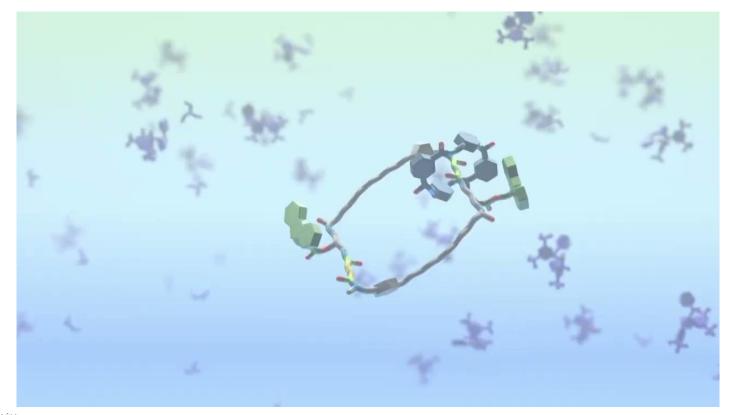
• MD step-size: $10^{-15} s = 1 fs$

⇒ Meaningful MD simulations need to propagate through 10⁶ steps!
 A challenging task, due to error propagation across steps.

Example: Multiscale Dynamics in a Molecular Machine

Video Source:

[Wilson et al., 2016]



Motivations and Challenges

Challenge 1: Computational Cost

- MD simulations require millions of small timesteps (femtoseconds)
- Biologically relevant phenomena occur at nano to microsecond scales

Challenge 2: Multi-scale Nature

- Fast dynamics: Atomic vibrations (femtoseconds)
- Slow dynamics: Conformational changes (nano to microseconds)

Challenge 3: Resolution Tradeoff

- Small timesteps: High accuracy but computationally expensive
- Large timesteps: Efficient but loses fine-grained details

Molecular Dynamics as Dynamic Graphs

Graph representation:

- $-\mathcal{G}=(\mathcal{V},\mathcal{E})$, where
 - $\mathcal{V}=v_i$ are atoms
 - $\mathcal{E} = \langle i,j
 angle$ are interactions (bonds, electrostatics)

Node attributes at time *t*:

- Features \mathbf{x}_i^t (e.g. velocity, charge)
- Position $\mathbf{r}_i(t) \in \mathbb{R}^3$

Prediction Task Formulation

Observed input: full sequence of positions & velocities

$$\{(\mathbf{r}_i(t), \mathbf{x}_i(t))\}_{i=1}^N \quad \text{for } t = 1, \dots, 2000$$

Prediction target: positions & velocities

$$\left\{\left(\hat{\mathbf{r}}_i(t),\hat{\mathbf{x}}_i(t)\right)
ight\}_{i=1}^N \quad ext{for } t=2001,\ldots,10000$$

ullet Evaluation: error measured on predicted positions $\hat{f r}_i(t)$ only

Current Approaches & Limitations

Traditional Autoregressive Model:

Roll-out step-by-step, lead to high cumulative error

Neural ODE-based models [Chen et al., 2018; Huang et al., 2020]

- Pro: Continuous formulation avoids autoregressive rollout issues
- Con: Lack explicit mechanisms for capturing fast/slow dynamics

Wavelet-based methods [Kriechbaumer et al., 2014]

- Pro: Decompose time series into frequency components
- Con: Fixed frequency decompositions miss complex nonlinearities

Generative MD approaches [Schreiner et al., 2023]

Pro: Enable efficient long-range sampling

Con: Can suffer from long-term instability

The General Graph ODE Framework: LG-ODE (Huang et al., 2020)

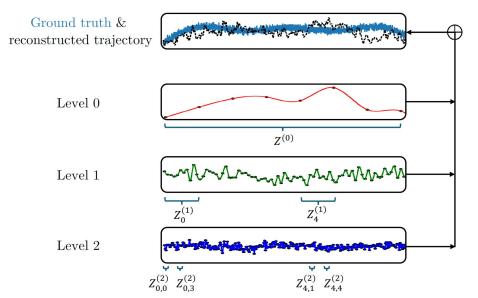
A Generative Model

- Step 1: Initial State Encoder to get a distribution for $oldsymbol{Z}^0$
- Step 2: Sample $oldsymbol{Z}^0$. and use ODESolver to infer $oldsymbol{Z}^t$ at any observed t

$$z_i^T = z_i^0 + \int_{t=0}^T g_i \left(z_1^t, z_2^t \cdots z_N^t
ight) dt$$

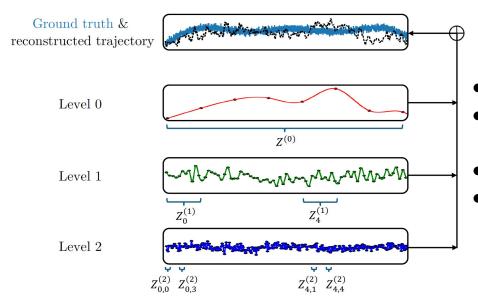
- Step 3: Generate observations from latent representation
- Loss = reconstruction loss + regularization term: $ELBO(\theta,\phi)$

Key Insight: Multi-scale Temporal Resolution



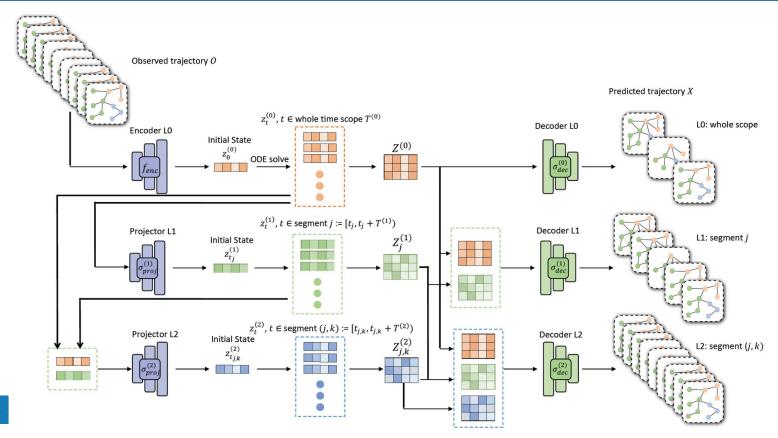
- MD trajectories contain coexisting fast and slow modes
- Different dynamics require different temporal resolutions
- Hierarchical decomposition can capture both scales efficiently
- Progressive refinement through "down-scaling"

Down-scaling Approach

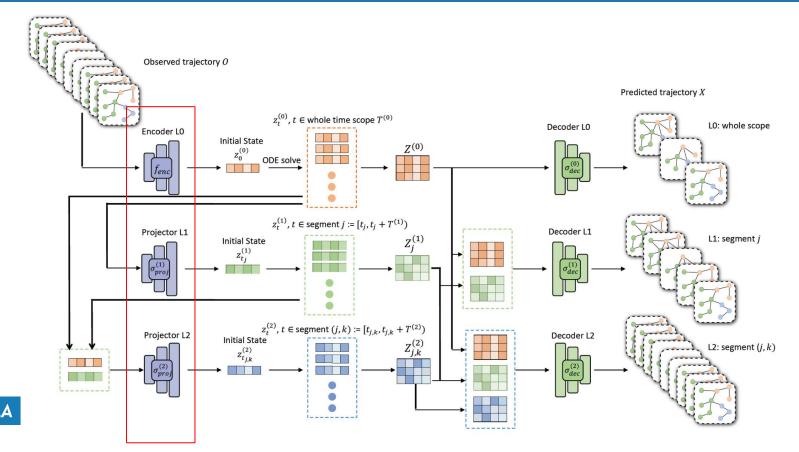


- Level 0: Captures slowest, large-scale motions
- Level 1, 2, etc.: Add progressively finer temporal details
- Only selective sampling needed at each level
- Efficient computation while maintaining accuracy

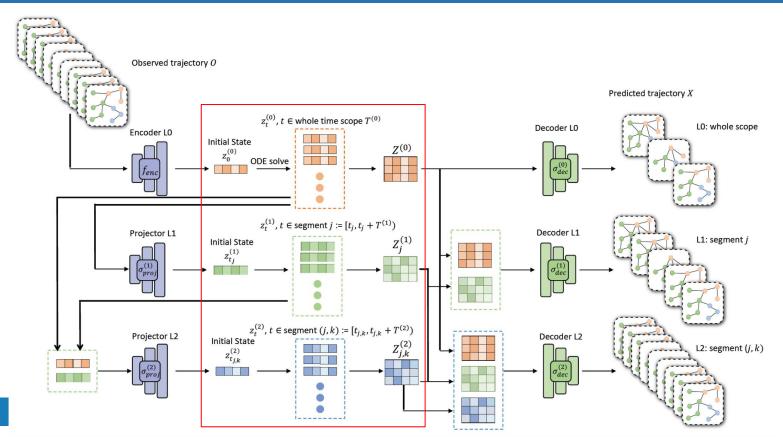
DoMiNO Framework Overview



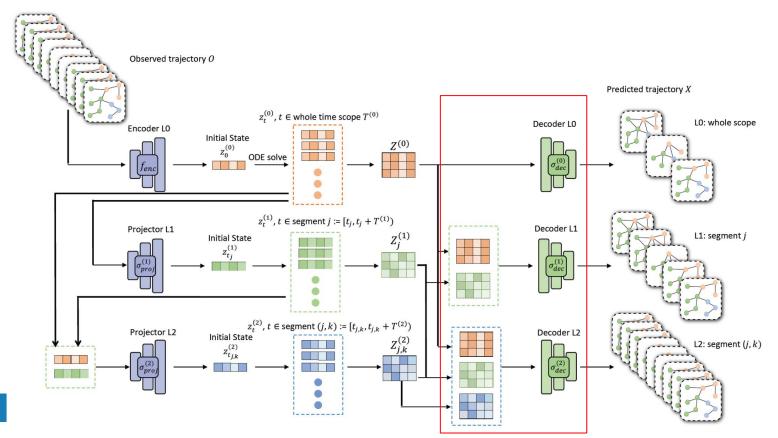
Encoder: PaiNN-based equivariant GNN extracts initial latent states



Hierarchical Neural Graph ODEs: Multi-level continuous-time dynamics modeling



Decoder: Fuses multi-level latent features for trajectory reconstruction



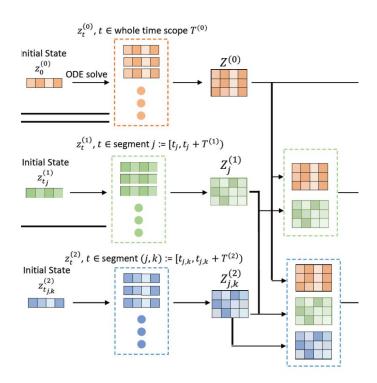
Mathematical Formulation for Downscaling ODEs

Level 0 ODE: $z_t^{(0)} = \mathrm{ODESolve}(z_0^{(0)}, f_{ heta}^{(0)}, t)$

Higher levels: $z_0^{(i)} = \sigma_{ ext{proj}}^{(i)}(z_{t_j}^{(i-1)})$

Evolution: $z_t^{(i)} = ext{ODESolve}(z_0^{(i)}, f_{ heta}^{(i)}, t)$

Multi-level fusion: $z_{\text{concat}}^t = [z_t^{(0)}, z_t^{(1)}, \dots, z_t^{(N)}]$



Evaluation & Datasets

Small Molecules:

- Lennard-Jones (LJ) system, 250 argon atoms
- TIP3P water, 258 water molecules
- TIP4P water, 258 water molecules

Proteins:

Alanine dipeptide (ALA2)

Evaluation Strategies:

- Full domain evaluation: we randomly sample time points across the 8000 time steps
- Selected time domain evaluation: we focus on particular time regions

Train-test Split

Small-molecule systems (LJ, TIP3P, TIP4P)

- 8 independent trajectories (length 10 000, random inits)
- Train on 5 trajectories, test on 3

Protein system (ALA2)

- 3 open-source trajectories
- Train on 2, test on 1

Note: no temporal dependency between train/test splits; each trajectory used wholly for one split.

Baseline Comparisons

Wavelet ARIMA [Kriechbaumer et al., 2014]: Multiscale statistical model with wavelet decomposition

DESCINet [Silva et al., 2023]: Hierarchical deep Convolutional Network for long time series forecasting

ITO [Schreiner et al., 2023]: Generative model using denoising diffusion with SE(3) equivariance

LG-ODE [Huang et al., 2020]: Neural-ODE based framework for continuous multi-agent dynamics

Overall performance based on sampled future timestamps

DoMiNO consistently outperforms baselines across all datasets

Table 1: Mean Squared Error (MSE) on the four datasets. Best results are marked in bold.

Model	LJ	TIP3P	TIP4P	ALA2
Wavelet ARIMA	0.1965	0.1551	0.1556	0.0323
DESCINet	0.2099 ± 0.0000	0.2034 ± 0.0000	0.2085 ± 0.0000	0.0344 ± 0.0000
ITO 1-step	0.2813 ± 0.0000	0.1838 ± 0.0000	0.1832 ± 0.0000	0.1756 ± 0.0001
ITO rollout	0.5422 ± 0.0002	0.4920 ± 0.0008	0.5177 ± 0.0014	0.7506 ± 0.0029
LG-ODE	0.1859 ± 0.0012	0.1520 ± 0.0001	0.1511 ± 0.0001	0.0447 ± 0.0009
Ours	0.1786 ± 0.0012	0.1513 ± 0.0001	0.1503 ± 0.0001	0.0225 ± 0.0034

Long-term stability

DoMiNO maintains consistently lower MSE at extended time horizons

Demonstrates robustness in handling long-sequence data

Captures both short and long-range molecular dynamics effectively

Table 3: Mean Squared Error (MSE) on the LJ dataset for different terminate timesteps. Best results are marked in bold.

Terminate timestep	80-100	180-200	980-1000	1980-2000	2980-3000	4980-5000	7980-8000
Wavelet ARIMA	0.1881	0.2032	0.1900	0.1956	0.2087	0.1928	0.1969
DESCINet	0.2204 ± 0.0000	0.2197 ± 0.0000	0.2015 ± 0.0000	0.2054 ± 0.0000	0.2252 ± 0.0000	0.2092 ± 0.0000	0.2139 ± 0.0000
ITO 1 step	0.2806 ± 0.0002	0.2807 ± 0.0002	0.2810 ± 0.0001	0.2801 ± 0.0002	0.2813 ± 0.0001	0.2812 ± 0.0002	0.2843 ± 0.0001
ITO rollout	0.5133 ± 0.0007	0.5314 ± 0.0004	0.5012 ± 0.0003	0.5255 ± 0.0007	0.5178 ± 0.0002	0.5032 ± 0.0002	0.5437 ± 0.0002
LG-ODE	0.1989 ± 0.0003	0.1927 ± 0.0003	0.1750 ± 0.0002	0.1817 ± 0.0002	0.1974 ± 0.0002	0.1840 ± 0.0008	0.1916 ± 0.0024
Ours	0.1982 ± 0.0001	0.1923 ± 0.0000	0.1745 ± 0.0001	0.1808 ± 0.0002	$0.1954 {\pm} 0.0001$	0.1799 ± 0.0001	$0.1840{\pm}0.0002$

Analysis of Temporal MSE Variation

Two Key Hardness Factors:

1. Dynamic Regime:

- **Early:** system still "settling" from initial conditions → rapid, nonlinear changes → high error
- \circ **Middle:** dynamics approach quasi-equilibrium \rightarrow smoother evolution \rightarrow lower error
- Late: error accumulation over long rollouts dominates → rising MSE

2. Roll-out Error Accumulation:

 Even in converged regimes, small per-step ODE integration errors compound over millions of femtoseconds

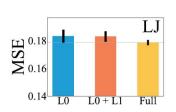
Ablation Study: Impact of Hierarchical Levels

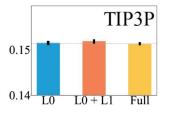
Compared three configurations:

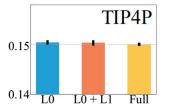
- Only Level 0 (L0)
- Levels 0 + 1 (L0+L1)
- Full model with all levels (L0+L1+L2)

Full hierarchical model consistently achieves lowest MSE

Validates effectiveness of multi-scale approach







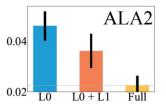


Figure 3: **Ablation study on hierarchical latent encoding.** The results show that incorporating multiple encoding levels leads to a consistent reduction in error, with the full hierarchical model (L0 + L1 + L2) achieving the best performance.

Key Contributions

New perspective: Fast-slow dichotomy in MD simulations with hierarchical downscaling

Novel architecture: Multi-level Neural Graph ODEs with learned transitions

Improved performance: Enhanced long-term stability and accuracy

Flexibility: Can predict both short and long-range dynamics with high fidelity

References

[Wilson et al., 2016] "An autonomous chemically fuelled small-molecule motor." *Nature* 534.7606 (2016): 235-240.

[Agarwal, 2006] "Enzymes: An integrated view of structure, dynamics and function." *Microbial cell factories* 5 (2006): 1-12.

[Chen et al., 2018] "Neural ordinary differential equations." *Advances in neural information processing systems* 31 (2018).

[Huang et al., 2020] "Learning continuous system dynamics from irregularly-sampled partial observations." *Advances in Neural Information Processing Systems* 33 (2020): 16177-16187.

[Kriechbaumer et al., 2014] "An improved wavelet–ARIMA approach for forecasting metal prices." Resources Policy 39 (2014): 32-41.

[Schreiner et al., 2023] "Implicit transfer operator learning: Multiple time-resolution models for molecular dynamics." Advances in Neural Information Processing Systems 36 (2023): 36449-36462.

[Silva et al.. 2023] "DESCINet: A hierarchical deep convolutional neural network with skip connection for long time series forecasting." *Expert Systems with Applications* 228 (2023): 120246.

Q&A

