Enhancing DNA Foundation Models to Address Masking Inefficiencies

Monireh Safari*, Pablo Millan Arias*, Scott C. Lowe4, Lila Kari¹, Angel X. Chang³, and Graham W. Taylor², Joint first author

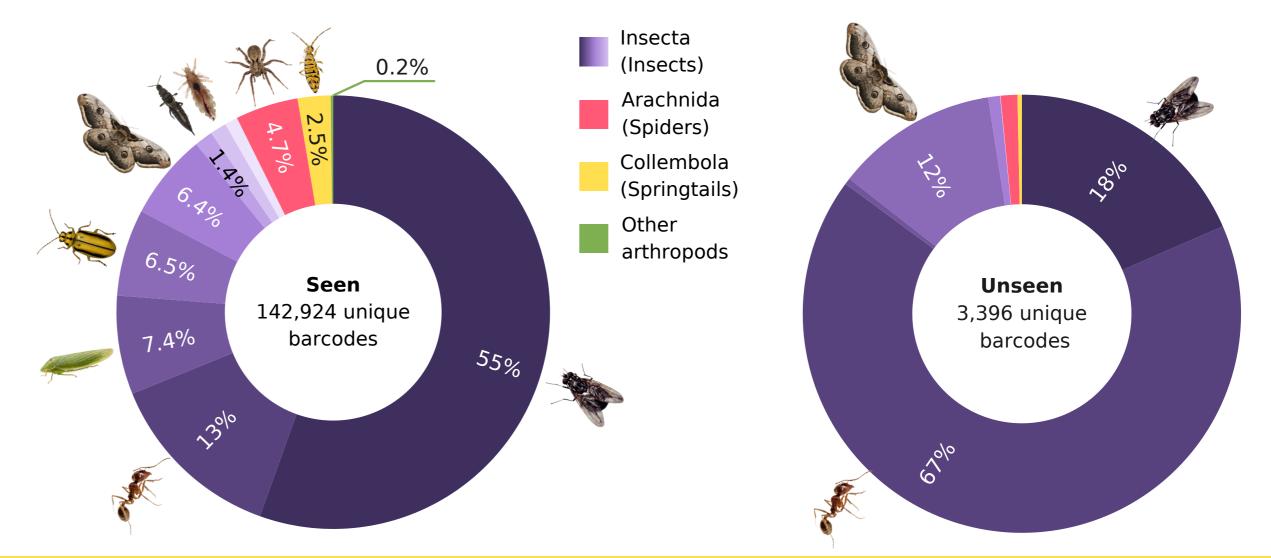
SFU SIMON FRASER UNIVERSITY

Background

- DNA foundation models are typically pretrained using Masked Language Modeling (MLM) and have shown strong performance on tasks like specimen classification to taxonomic labels
- The [MASK] token appears during pretraining for the MLM task but is absent at inference, causing a distribution shift. This leads to unused [MASK] embeddings, degrading representation quality and downstream performance
- In this work, we explore the Masked Autoencoder for MLM (MAE-LM)¹ to fix the distribution shift in the DNA foundation model. Our results suggest that MAE is effective and improves performance

Dataset

- **DNA Barcode:** 658 bp genetic sequences used for specimen identification
- BIOSCAN-5M² contains 5.1M records with 2.4M unique DNA barcodes
- 2.28M barcodes in Pretrain and 145k barcodes in Seen and Unseen subsets:



MLM vs MAE-LM in DNA Foundation Models

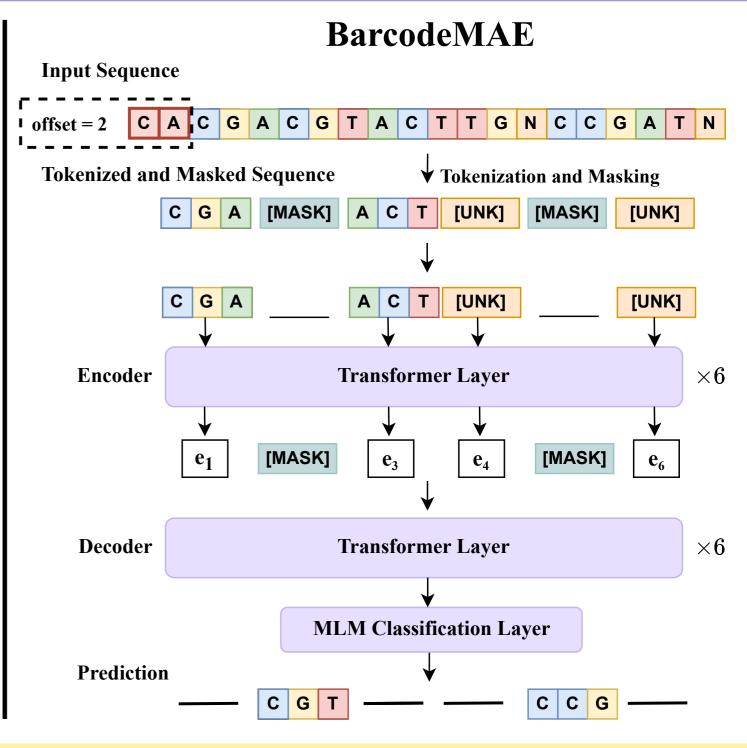
Encoder-only model: **BarcodeBERT**³

- The encoder predicts masked tokens during pretraining
- The absence of [MASK] token in downstream tasks can cause representational deficiency

Our **proposed model**:

Encoder-Decoder model: BarcodeMAE

- Encoder **never** sees [MASK] tokens during pretraining
- The decoder predicts masked tokens
- Only the encoder is used for downstream tasks



Experimental Setup and Results

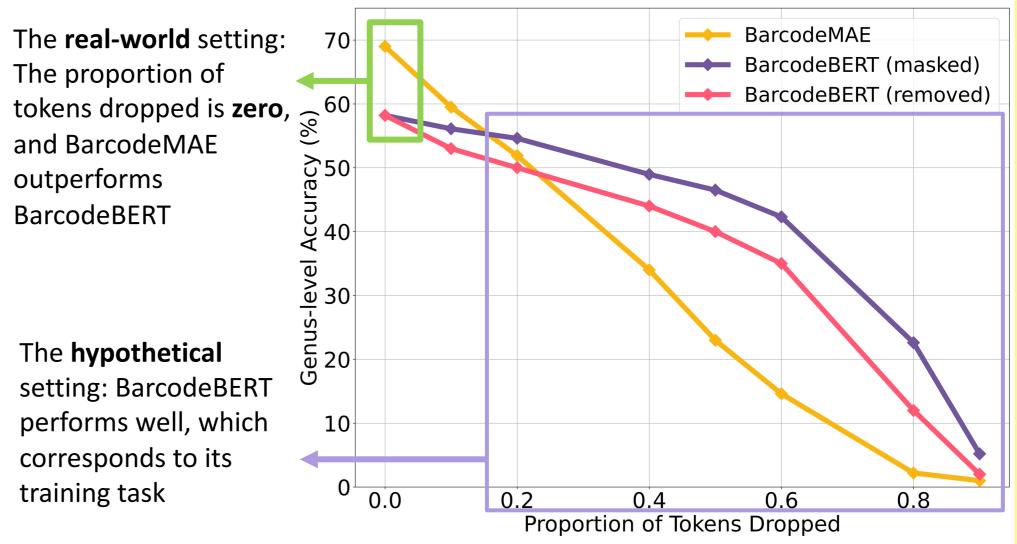
- 1-NN probe: Tests generalization to new species within known general using genus-level classification
- Zero-Shot Clustering (ZSC) probe: Assesses the ability to identify new species through zero-shot clustering

Architecture	Model	1-NN probe acc (%)	ZSC probe AMI (%)	Harmonic Mean
Encoder-	DNABERT-2	18.0	77.0	29.2
only	DNABERT-S	17.7	87.7	29.5
	Nucleotide Transformer	21.7	37.3	27.4
	BarcodeBERT	58.3	79.3	67.2
Encoder-	BarcodeMAE w/MASK	65.4	80.6	<u>72.2</u>
decoder	BarcodeMAE	69.0	80.3	74.2

- BarcodeMAE outperforms baselines by 10% in 1-NN probe
- BarcodeMAE achieves 80.3% AMI ZSC probe
- BarcodeMAE gets the highest harmonic mean across both tasks

Further Findings

 Performance of BarcodeBERT in a hypothetical experiment when tokens are removed or masked during inference

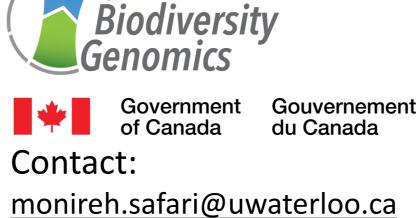


 The performance gap in masking vs removal setup suggests BarcodeBERT, uses computation associated with the [MASK] token to better extract information from the remaining sequence

GitHub

Paper

BIOSCAN is supported in part by funding from the Government of Canada's New Frontiers in Research Fund (NFRF).



pmillana@uwaterloo.ca

Centre for

Conclusion

- **BarcodeMAE** performance is **improved** by adopting MAE-LM architecture
- Our results show the BarcodeBERT model develops a dependency on the [MASK] token during pretraining