### Session

## Oral Session 1

Moderators: Ozan Sener · Blake Richards · Yutian Chen

**Dataset Condensation with Gradient Matching**

Bo ZHAO · Konda Reddy Mopuri · Hakan Bilen

As the state-of-the-art machine learning methods in many fields rely on larger datasets, storing datasets and training models on them become significantly more expensive. This paper proposes a training set synthesis technique for data-efficient learning, called Dataset Condensation, that learns to condense large dataset into a small set of informative synthetic samples for training deep neural networks from scratch. We formulate this goal as a gradient matching problem between the gradients of deep neural network weights that are trained on the original and our synthetic data. We rigorously evaluate its performance in several computer vision benchmarks and demonstrate that it significantly outperforms the state-of-the-art methods. Finally we explore the use of our method in continual learning and neural architecture search and report promising gains when limited memory and computations are available.

**Free Lunch for Few-shot Learning: Distribution Calibration**

Shuo Yang · Lu Liu · Min Xu

Learning from a limited number of samples is challenging since the learned model can easily become overfitted based on the biased distribution formed by only a few training examples. In this paper, we calibrate the distribution of these few-sample classes by transferring statistics from the classes with sufficient examples. Then an adequate number of examples can be sampled from the calibrated distribution to expand the inputs to the classifier. We assume every dimension in the feature representation follows a Gaussian distribution so that the mean and the variance of the distribution can borrow from that of similar classes whose statistics are better estimated with an adequate number of samples. Our method can be built on top of off-the-shelf pretrained feature extractors and classification models without extra parameters. We show that a simple logistic regression classifier trained using the features sampled from our calibrated distribution can outperform the state-of-the-art accuracy on three datasets (~5% improvement on miniImageNet compared to the next best). The visualization of these generated features demonstrates that our calibrated distribution is an accurate estimation.

**Deciphering and Optimizing Multi-Task Learning: a Random Matrix Approach**

Malik Tiomoko · Hafiz Tiomoko Ali · Romain Couillet

This article provides theoretical insights into the inner workings of multi-task and transfer learning methods, by studying the tractable least-square support vector machine multi-task learning (LS-SVM MTL) method, in the limit of large ($p$) and numerous ($n$) data. By a random matrix analysis applied to a Gaussian mixture data model, the performance of MTL LS-SVM is shown to converge, as $n,p\to\infty$, to a deterministic limit involving simple (small-dimensional) statistics of the data. We prove (i) that the standard MTL LS-SVM algorithm is in general strongly biased and may dramatically fail (to the point that individual single-task LS-SVMs may outperform the MTL approach, even for quite resembling tasks): our analysis provides a simple method to correct these biases, and that we reveal (ii) the sufficient statistics at play in the method, which can be efficiently estimated, even for quite small datasets. The latter result is exploited to automatically optimize the hyperparameters without resorting to any cross-validation procedure. Experiments on popular datasets demonstrate that our improved MTL LS-SVM method is computationally-efficient and outperforms sometimes much more elaborate state-of-the-art multi-task and transfer learning techniques.

**Generalization in data-driven models of primary visual cortex**

Konstantin-Klemens Lurz · Mohammad Bashiri · Konstantin Willeke · Akshay Jagadish · Eric Wang · Edgar Walker · Santiago Cadena · Taliah Muhammad · Erick M Cobos · Andreas Tolias · Alexander S Ecker · Fabian Sinz

Deep neural networks (DNN) have set new standards at predicting responses of neural populations to visual input. Most such DNNs consist of a convolutional network (core) shared across all neurons which learns a representation of neural computation in visual cortex and a neuron-specific readout that linearly combines the relevant features in this representation. The goal of this paper is to test whether such a representation is indeed generally characteristic for visual cortex, i.e. generalizes between animals of a species, and what factors contribute to obtaining such a generalizing core. To push all non-linear computations into the core where the generalizing cortical features should be learned, we devise a novel readout that reduces the number of parameters per neuron in the readout by up to two orders of magnitude compared to the previous state-of-the-art. It does so by taking advantage of retinotopy and learns a Gaussian distribution over the neuron’s receptive field position. With this new readout we train our network on neural responses from mouse primary visual cortex (V1) and obtain a gain in performance of 7% compared to the previous state-of-the-art network. We then investigate whether the convolutional core indeed captures general cortical features by using the core in transfer learning to a different animal. When transferring a core trained on thousands of neurons from various animals and scans we exceed the performance of training directly on that animal by 12%, and outperform a commonly used VGG16 core pre-trained on imagenet by 33%. In addition, transfer learning with our data-driven core is more data-efficient than direct training, achieving the same performance with only 40% of the data. Our model with its novel readout thus sets a new state-of-the-art for neural response prediction in mouse visual cortex from natural images, generalizes between animals, and captures better characteristic cortical features than current task-driven pre-training approaches such as VGG16.

**Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding**

David Klindt · Lukas Schott · Yash Sharma · Ivan Ustyuzhaninov · Wieland Brendel · Matthias Bethge · Dylan Paiton

Disentangling the underlying generative factors from complex data has so far been limited to carefully constructed scenarios. We propose a path towards natural data by first showing that the statistics of natural data provide enough structure to enable disentanglement, both theoretically and empirically. Specifically, we provide evidence that objects in natural movies undergo transitions that are typically small in magnitude with occasional large jumps, which is characteristic of a temporally sparse distribution. To address this finding we provide a novel proof that relies on a sparse prior on temporally adjacent observations to recover the true latent variables up to permutations and sign flips, directly providing a stronger result than previous work. We show that equipping practical estimation methods with our prior often surpasses the current state-of-the-art on several established benchmark datasets without any impractical assumptions, such as knowledge of the number of changing generative factors. Furthermore, we contribute two new benchmarks, Natural Sprites and KITTI Masks, which integrate the measured natural dynamics to enable disentanglement evaluation with more realistic datasets. We leverage these benchmarks to test our theory, demonstrating improved performance. We also identify non-obvious challenges for current methods in scaling to more natural domains. Taken together our work addresses key issues in disentanglement research for moving towards more natural settings.

**A Distributional Approach to Controlled Text Generation**

Muhammad Khalifa · Hady Elsahar · Marc Dymetman

We propose a Distributional Approach for addressing Controlled Text Generation from pre-trained Language Models (LM). This approach permits to specify, in a single formal framework, both “pointwise’” and “distributional” constraints over the target LM — to our knowledge, the first model with such generality —while minimizing KL divergence from the initial LM distribution. The optimal target distribution is then uniquely determined as an explicit EBM (Energy-BasedModel) representation. From that optimal representation, we then train a target controlled Autoregressive LM through an adaptive distributional variant of PolicyGradient. We conduct a first set of experiments over pointwise constraints showing the advantages of our approach over a set of baselines, in terms of obtaining a controlled LM balancing constraint satisfaction with divergence from the pretrained LM. We then perform experiments over distributional constraints, a unique feature of our approach, demonstrating its potential as a remedy to the problem of Bias in Language Models. Through an ablation study, we show the effectiveness of our adaptive technique for obtaining faster convergence. Code available at https://github.com/naver/gdc

**The Intrinsic Dimension of Images and Its Impact on Learning**

Phil Pope · Chen Zhu · Ahmed Abdelkader · Micah Goldblum · Tom Goldstein

It is widely believed that natural image data exhibits low-dimensional structure despite the high dimensionality of conventional pixel representations. This idea underlies a common intuition for the remarkable success of deep learning in computer vision. In this work, we apply dimension estimation tools to popular datasets and investigate the role of low-dimensional structure in deep learning. We find that common natural image datasets indeed have very low intrinsic dimension relative to the high number of pixels in the images. Additionally, we find that low dimensional datasets are easier for neural networks to learn, and models solving these tasks generalize better from training to test data. Along the way, we develop a technique for validating our dimension estimation tools on synthetic data generated by GANs allowing us to actively manipulate the intrinsic dimension by controlling the image generation process. Code for our experiments may be found \href{https://github.com/ppope/dimensions}{here}.

**How Benign is Benign Overfitting ?**

Amartya Sanyal · Puneet Dokania · Varun Kanade · Philip Torr

We investigate two causes for adversarial vulnerability in deep neural networks: bad data and (poorly) trained models. When trained with SGD, deep neural networks essentially achieve zero training error, even in the presence of label noise, while also exhibiting good generalization on natural test data, something referred to as benign overfitting (Bartlett et al., 2020; Chatterji & Long, 2020). However, these models are vulnerable to adversarial attacks. We identify label noise as one of the causes for adversarial vulnerability, and provide theoretical and empirical evidence in support of this. Surprisingly, we find several instances of label noise in datasets such as MNIST and CIFAR, and that robustly trained models incur training error on some of these, i.e. they don’t fit the noise. However, removing noisy labels alone does not suffice to achieve adversarial robustness. We conjecture that in part sub-optimal representation learning is also responsible for adversarial vulnerability. By means of simple theoretical setups, we show how the choice of representation can drastically affect adversarial robustness.

**Geometry-aware Instance-reweighted Adversarial Training**

Jingfeng Zhang · Jianing ZHU · Gang Niu · Bo Han · Masashi Sugiyama · Mohan Kankanhalli

In adversarial machine learning, there was a common belief that robustness and accuracy hurt each other. The belief was challenged by recent studies where we can maintain the robustness and improve the accuracy. However, the other direction, whether we can keep the accuracy and improve the robustness, is conceptually and practically more interesting, since robust accuracy should be lower than standard accuracy for any model. In this paper, we show this direction is also promising. Firstly, we find even over-parameterized deep networks may still have insufficient model capacity, because adversarial training has an overwhelming smoothing effect. Secondly, given limited model capacity, we argue adversarial data should have unequal importance: geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight. Finally, to implement the idea, we propose geometry-aware instance-reweighted adversarial training, where the weights are based on how difficult it is to attack a natural data point. Experiments show that our proposal boosts the robustness of standard adversarial training; combining two directions, we improve both robustness and accuracy of standard adversarial training.

**Do 2D GANs Know 3D Shape? Unsupervised 3D Shape Reconstruction from 2D Image GANs**

Xingang Pan · Bo DAI · Ziwei Liu · Chen Change Loy · Ping Luo

Natural images are projections of 3D objects on a 2D image plane. While state-of-the-art 2D generative models like GANs show unprecedented quality in modeling the natural image manifold, it is unclear whether they implicitly capture the underlying 3D object structures. And if so, how could we exploit such knowledge to recover the 3D shapes of objects in the images? To answer these questions, in this work, we present the first attempt to directly mine 3D geometric cues from an off-the-shelf 2D GAN that is trained on RGB images only. Through our investigation, we found that such a pre-trained GAN indeed contains rich 3D knowledge and thus can be used to recover 3D shape from a single 2D image in an unsupervised manner. The core of our framework is an iterative strategy that explores and exploits diverse viewpoint and lighting variations in the GAN image manifold. The framework does not require 2D keypoint or 3D annotations, or strong assumptions on object shapes (e.g. shapes are symmetric), yet it successfully recovers 3D shapes with high precision for human faces, cats, cars, and buildings. The recovered 3D shapes immediately allow high-quality image editing like relighting and object rotation. We quantitatively demonstrate the effectiveness of our approach compared to previous methods in both 3D shape reconstruction and face rotation. Our code is available at https://github.com/XingangPan/GAN2Shape.

**Rethinking the Role of Gradient-based Attribution Methods for Model Interpretability**

Suraj Srinivas · François Fleuret

Current methods for the interpretability of discriminative deep neural networks commonly rely on the model's input-gradients, i.e., the gradients of the output logits w.r.t. the inputs. The common assumption is that these input-gradients contain information regarding $p_{\theta} ( y\mid \mathbf{x} )$, the model's discriminative capabilities, thus justifying their use for interpretability. However, in this work, we show that these input-gradients can be arbitrarily manipulated as a consequence of the shift-invariance of softmax without changing the discriminative function. This leaves an open question: given that input-gradients can be arbitrary, why are they highly structured and explanatory in standard models? In this work, we re-interpret the logits of standard softmax-based classifiers as unnormalized log-densities of the data distribution and show that input-gradients can be viewed as gradients of a class-conditional generative model $p_{\theta}(\mathbf{x} \mid y)$ implicit in the discriminative model. This leads us to hypothesize that the highly structured and explanatory nature of input-gradients may be due to the alignment of this class-conditional model $p_{\theta}(\mathbf{x} \mid y)$ with that of the ground truth data distribution $p_{\text{data}} (\mathbf{x} \mid y)$. We test this hypothesis by studying the effect of density alignment on gradient explanations. To achieve this density alignment, we use an algorithm called score-matching, and propose novel approximations to this algorithm to enable training large-scale models. Our experiments show that improving the alignment of the implicit density model with the data distribution enhances gradient structure and explanatory power while reducing this alignment has the opposite effect. This also leads us to conjecture that unintended density alignment in standard neural network training may explain the highly structured nature of input-gradients observed in practice. Overall, our finding that input-gradients capture information regarding an implicit generative model implies that we need to re-think their use for interpreting discriminative models.

**Contrastive Divergence Learning is a Time Reversal Adversarial Game**

Omer Yair · Tomer Michaeli

Contrastive divergence (CD) learning is a classical method for fitting unnormalized statistical models to data samples. Despite its wide-spread use, the convergence properties of this algorithm are still not well understood. The main source of difficulty is an unjustified approximation which has been used to derive the gradient of the loss. In this paper, we present an alternative derivation of CD that does not require any approximation and sheds new light on the objective that is actually being optimized by the algorithm. Specifically, we show that CD is an adversarial learning procedure, where a discriminator attempts to classify whether a Markov chain generated from the model has been time-reversed. Thus, although predating generative adversarial networks (GANs) by more than a decade, CD is, in fact, closely related to these techniques. Our derivation settles well with previous observations, which have concluded that CD's update steps cannot be expressed as the gradients of any fixed objective function. In addition, as a byproduct, our derivation reveals a simple correction that can be used as an alternative to Metropolis-Hastings rejection, which is required when the underlying Markov chain is inexact (e.g., when using Langevin dynamics with a large step).