The Twelfth International Conference on Learning Representations
Vienna Austria
May 7th, 2024 to May 11th, 2024
Announcements
- Self-nomination form for ICLR 2024 Reviewing. Interested in being a reviewer? Fill out the form!
- BEWARE of Predatory ICLR conferences being promoted through the World Academy of Science, Engineering and Technology organization.
Sponsors

We are very excited to be holding the ICLR 2024 annual conference in Vienna, Austria this year from May 7-11 2024.
Latest ICLR Blog Entries [ All Entries ]
Apr 24, 2023 Announcing ICLR 2023 Office Hours
Apr 13, 2023 Ethics Review Process for ICLR 2023
Apr 06, 2023 Announcing Notable Reviewers and Area Chairs at ICLR 2023
Mar 21, 2023 Announcing the ICLR 2023 Outstanding Paper Award Recipients
Feb 18, 2023 Get Ready for ICLR 2023
Feb 14, 2023 Announcing ICLR 2023 Keynote Speakers
Important Dates
Virtual Only Pass | Sun May 7th through Thu the 11th | |
Conference Sessions and Workshops | Tue May 7th through Fri the 10th | |
Saturday Workshop 1 Day Pass | Sat May 11th |
Paper Submission Deadline | Sep 28 '23 (Anywhere on Earth) | |
Workshop Submission Deadline | Oct 21 '23 08:00 AM CEST * | |
Registration Open | Oct 31 '23 11:00 PM CET * | |
All dates » | Timezone: » |
About Us
The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning.
ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.
Participants at ICLR span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.
A non-exhaustive list of relevant topics explored at the conference include:
- unsupervised, semi-supervised, and supervised representation learning
- representation learning for planning and reinforcement learning
- representation learning for computer vision and natural language processing
- metric learning and kernel learning
- sparse coding and dimensionality expansion
- hierarchical models
- optimization for representation learning
- learning representations of outputs or states
- optimal transport
- theoretical issues in deep learning
- societal considerations of representation learning including fairness, safety, privacy, and interpretability, and explainability
- visualization or interpretation of learned representations
- implementation issues, parallelization, software platforms, hardware
- climate, sustainability
- applications in audio, speech, robotics, neuroscience, biology, or any other field