Invited Talk: Jenny Davis
‘Affordances’ for Machine Learning
Affordances are how the features of a technology shape, but do not determine, the uses and effects of that technology. In this address, I will demonstrate the value of an affordance framework for the analysis and design of ML systems. Specifically, I will delineate and apply the mechanisms and conditions framework of affordance, which models the way technologies request, demand, encourage, discourage, refuse, and allow technical and social outcomes. Illustrated through a case example that traverses critical analysis of an ML systems and its imagined (re)making, the mechanisms and conditions framework lays bare not just that technical choices are profoundly social, but also how and for whom. This approach displaces vagaries and general claims with the particularities of systems in context, empowering critically minded practitioners while holding power—and the systems power relations produce—to account.
Bio :
Poster Session 6 Wed 27 Apr 01:30 a.m.
[ Virtual ]

The deep policy gradient method has demonstrated promising results in many large-scale games, where the agent learns purely from its own experience. Yet, policy gradient methods with self-play suffer convergence problems to a Nash Equilibrium (NE) in multi-agent situations. Counterfactual regret minimization (CFR) has a convergence guarantee to a NE in 2-player zero-sum games, but it usually needs domain-specific abstractions to deal with large-scale games. Inheriting merits from both methods, in this paper we extend the actor-critic algorithm framework in deep reinforcement learning to tackle a large-scale 2-player zero-sum imperfect-information game, 1-on-1 Mahjong, whose information set size and game length are much larger than poker. The proposed algorithm, named Actor-Critic Hedge (ACH), modifies the policy optimization objective from originally maximizing the discounted returns to minimizing a type of weighted cumulative counterfactual regret. This modification is achieved by approximating the regret via a deep neural network and minimizing the regret via generating self-play policies using Hedge. ACH is theoretically justified as it is derived from a neural-based weighted CFR, for which we prove the convergence to a NE under certain conditions. Experimental results on the proposed 1-on-1 Mahjong benchmark and benchmarks from the literature demonstrate that ACH outperforms related state-of-the-art methods. …
[ Virtual ]

We study a contextual bandit setting where the learning agent has the ability to perform interventions on targeted subsets of the population, apart from possessing qualitative causal side-information. This novel formalism captures intricacies in real-world scenarios such as software product experimentation where targeted experiments can be conducted. However, this fundamentally changes the set of options that the agent has, compared to standard contextual bandit settings, necessitating new techniques. This is also the first work that integrates causal side-information in a contextual bandit setting, where the agent aims to learn a policy that maps contexts to arms (as opposed to just identifying one best arm). We propose a new algorithm, which we show empirically performs better than baselines on experiments that use purely synthetic data and on real world-inspired experiments. We also prove a bound on regret that theoretically guards performance.
[ Virtual ]

[ Virtual ]

Traffic forecasting is a challenging problem due to complex road networks and sudden speed changes caused by various events on roads. Several models have been proposed to solve this challenging problem, with a focus on learning the spatio-temporal dependencies of roads. In this work, we propose a new perspective for converting the forecasting problem into a pattern-matching task, assuming that large traffic data can be represented by a set of patterns. To evaluate the validity of this new perspective, we design a novel traffic forecasting model called Pattern-Matching Memory Networks (PM-MemNet), which learns to match input data to representative patterns with a key-value memory structure. We first extract and cluster representative traffic patterns that serve as keys in the memory. Then, by matching the extracted keys and inputs, PM-MemNet acquires the necessary information on existing traffic patterns from the memory and uses it for forecasting. To model the spatio-temporal correlation of traffic, we proposed a novel memory architecture, GCMem, which integrates attention and graph convolution. The experimental results indicate that PM-MemNet is more accurate than state-of-the-art models, such as Graph WaveNet, with higher responsiveness. We also present a qualitative analysis describing how PM-MemNet works and achieves higher accuracy when road …
[ Virtual ]

One of the main challenges for feature representation in deep learning-based classification is the design of appropriate loss functions that exhibit strong discriminative power. The classical softmax loss does not explicitly encourage discriminative learning of features. A popular direction of research is to incorporate margins in well-established losses in order to enforce extra intra-class compactness and inter-class separability, which, however, were developed through heuristic means, as opposed to rigorous mathematical principles. In this work, we attempt to address this limitation by formulating the principled optimization objective as learning towards the largest margins. Specifically, we firstly propose to employ the class margin as the measure of inter-class separability, and the sample margin as the measure of intra-class compactness. Accordingly, to encourage discriminative representation of features, the loss function should promote the largest possible margins for both classes and samples. Furthermore, we derive a generalized margin softmax loss to draw general conclusions for the existing margin-based losses. Not only does this principled framework offer new perspectives to understand and interpret existing margin-based losses, but it also provides new insights that can guide the design of new tools, including \textit{sample margin regularization} and \textit{largest margin softmax loss} for class balanced cases, and \textit{zero …
[ Virtual ]

Recently, deep linear and nonlinear matrix factorizations gain increasing attention in the area of machine learning. Existing deep nonlinear matrix factorization methods can only exploit partial nonlinearity of the data and are not effective in handling matrices of which the number of rows is comparable to the number of columns. On the other hand, there is still a gap between deep learning and tensor decomposition. This paper presents a framework of multi-mode deep matrix and tensor factorizations to explore and exploit the full nonlinearity of the data in matrices and tensors. We use the factorization methods to solve matrix and tensor completion problems and prove that our methods have tighter generalization error bounds than conventional matrix and tensor factorization methods. The experiments on synthetic data and real datasets showed that the proposed methods have much higher recovery accuracy than many baselines.
[ Virtual ]

In this paper, we question the rationale behind propagating large numbers of parameters through a distributed system during federated learning. We start by examining the rank characteristics of the subspace spanned by gradients (i.e., the gradient-space) in centralized model training, and observe that the gradient-space often consists of a few leading principal components accounting for an overwhelming majority (95-99%) of the explained variance. Motivated by this, we propose the "Look-back Gradient Multiplier" (LBGM) algorithm, which utilizes this low-rank property of the gradient-space in federated learning. Operationally, LBGM recycles the gradients between model update rounds to significantly reduce the number of parameters to be propagated through the system. We analytically characterize the convergence behavior of LBGM, revealing the nature of the trade-off between communication savings and model performance. Our subsequent experimental results demonstrate the improvement LBGM obtains on communication overhead compared to federated learning baselines. Additionally, we show that LBGM is a general plug-and-play algorithm that can be used standalone or stacked on top of existing sparsification techniques for distributed model training.
[ Virtual ]

A topic model is often formulated as a generative model that explains how each word of a document is generated given a set of topics and document-specific topic proportions. It is focused on capturing the word co-occurrences in a document and hence often suffers from poor performance in analyzing short documents. In addition, its parameter estimation often relies on approximate posterior inference that is either not scalable or suffering from large approximation error. This paper introduces a new topic-modeling framework where each document is viewed as a set of word embedding vectors and each topic is modeled as an embedding vector in the same embedding space. Embedding the words and topics in the same vector space, we define a method to measure the semantic difference between the embedding vectors of the words of a document and these of the topics, and optimize the topic embeddings to minimize the expected difference over all documents. Experiments on text analysis demonstrate that the proposed method, which is amenable to mini-batch stochastic gradient descent based optimization and hence scalable to big corpora, provides competitive performance in discovering more coherent and diverse topics and extracting better document representations.
[ Virtual ]

We introduce a new family of particle evolution samplers suitable for constrained domains and non-Euclidean geometries. Stein Variational Mirror Descent and Mirrored Stein Variational Gradient Descent minimize the Kullback-Leibler (KL) divergence to constrained target distributions by evolving particles in a dual space defined by a mirror map. Stein Variational Natural Gradient exploits non-Euclidean geometry to more efficiently minimize the KL divergence to unconstrained targets. We derive these samplers from a new class of mirrored Stein operators and adaptive kernels developed in this work. We demonstrate that these new samplers yield accurate approximations to distributions on the simplex, deliver valid confidence intervals in post-selection inference, and converge more rapidly than prior methods in large-scale unconstrained posterior inference. Finally, we establish the convergence of our new procedures under verifiable conditions on the target distribution.
[ Virtual ]

Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes the improvements on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs and to achieve new state-of-the-art results on various downstream tasks. Our code can be found at https://github.com/microsoft/Table-Pretraining.
[ Virtual ]

In the Mixup training paradigm, a model is trained using convex combinations of data points and their associated labels. Despite seeing very few true data points during training, models trained using Mixup seem to still minimize the original empirical risk and exhibit better generalization and robustness on various tasks when compared to standard training. In this paper, we investigate how these benefits of Mixup training rely on properties of the data in the context of classification. For minimizing the original empirical risk, we compute a closed form for the Mixup-optimal classification, which allows us to construct a simple dataset on which minimizing the Mixup loss leads to learning a classifier that does not minimize the empirical loss on the data. On the other hand, we also give sufficient conditions for Mixup training to also minimize the original empirical risk. For generalization, we characterize the margin of a Mixup classifier, and use this to understand why the decision boundary of a Mixup classifier can adapt better to the full structure of the training data when compared to standard training. In contrast, we also show that, for a large class of linear models and linearly separable datasets, Mixup training leads to learning …
[ Virtual ]

To mitigate the burden of data labeling, we aim at improving data efficiency for both classification and regression setups in deep learning. However, the current focus is on classification problems while rare attention has been paid to deep regression, which usually requires more human effort to labeling. Further, due to the intrinsic difference between categorical and continuous label space, the common intuitions for classification, \textit{e.g.} cluster assumptions or pseudo labeling strategies, cannot be naturally adapted into deep regression. To this end, we first delved into the existing data-efficient methods in deep learning and found that they either encourage invariance to \textit{data stochasticity} (\textit{e.g.}, consistency regularization under different augmentations) or \textit{model stochasticity} (\textit{e.g.}, difference penalty for predictions of models with different dropout). To take the power of both worlds, we propose a novel \Chi-model by simultaneously encouraging the invariance to {data stochasticity} and {model stochasticity}. Further, the \Chi-model plays a minimax game between the feature extractor and task-specific heads to further enhance the invariance to model stochasticity. Extensive experiments verify the superiority of the \Chi-model among various tasks, from a single-value prediction task of age estimation to a dense-value prediction task of keypoint localization, a 2D synthetic and a 3D realistic …


Anderson mixing (AM) is a powerful acceleration method for fixed-point iterations, but its computation requires storing many historical iterations. The extra memory footprint can be prohibitive when solving high-dimensional problems in a resource-limited machine. To reduce the memory overhead, we propose a novel class of short-term recurrence AM methods (ST-AM). The ST-AM methods only store two previous iterations with cheap corrections. We prove that the basic version of ST-AM is equivalent to the full-memory AM in strongly convex quadratic optimization, and with minor changes it has local linear convergence for solving general nonlinear fixed-point problems. We further analyze the convergence properties of the regularized ST-AM for nonconvex (stochastic) optimization. Finally, we apply ST-AM to several applications including solving root-finding problems and training neural networks. Experimental results show that ST-AM is competitive with the long-memory AM and outperforms many existing optimizers.

We present a novel method for 3D shape representation learning using multi-scale wavelet decomposition. Distinct from previous works that either decompose 3D shapes into complementary components at a single scale, or naively adopt up-/down-sampling to build hierarchies and treat all points or local regions equally, we decompose 3D shapes into sub-bands components at multiple scales and all scales form a decomposition tree in a principled manner rooted in multi-resolution wavelet analysis. Specifically, we propose Adaptive Wavelet Transformer Network (AWT-Net) that firstly generates approximation or detail wavelet coefficients per point, classifying each point into high or low sub bands components, using lifting scheme at multiple scales recursively and hierarchically. Then, AWT-Net exploits Transformer that treats the features from different but complementary components as two integrated representations, and fuses them with the original shape features with different attentions. The wavelet coefficients can be learned without direct supervision on coefficients, and AWT-Net is fully differentiable and can be learned in an end-to-end fashion. Extensive experiments demonstrate that AWT-Net achieves competitive performance on 3D shape classification and segmentation benchmarks.

We consider the problem of generating 3D molecular geometries from scratch. While multiple methods have been developed for generating molecular graphs, generating 3D molecular geometries from scratch is largely under-explored. In this work, we propose G-SphereNet, a novel autoregressive flow model for generating 3D molecular geometries. G-SphereNet employs a flexible sequential generation scheme by placing atoms in 3D space step-by-step. Instead of generating 3D coordinates directly, we propose to determine 3D positions of atoms by generating distances, angles and torsion angles, thereby ensuring both invariance and equivariance properties. In addition, we propose to use spherical message passing and attention mechanism for conditional information extraction. Experimental results show that G-SphereNet outperforms previous methods on random molecular geometry generation and targeted molecule discovery tasks. Our code is publicly available as part of the DIG package (https://github.com/divelab/DIG).

An important characteristic of neural networks is their ability to learn representations of the input data with effective features for prediction, which is believed to be a key factor to their superior empirical performance. To better understand the source and benefit of feature learning in neural networks, we consider learning problems motivated by practical data, where the labels are determined by a set of class relevant patterns and the inputs are generated from these along with some background patterns. We prove that neural networks trained by gradient descent can succeed on these problems. The success relies on the emergence and improvement of effective features, which are learned among exponentially many candidates efficiently by exploiting the data (in particular, the structure of the input distribution). In contrast, no linear models on data-independent features of polynomial sizes can learn to as good errors. Furthermore, if the specific input structure is removed, then no polynomial algorithm in the Statistical Query model can learn even weakly. These results provide theoretical evidence showing that feature learning in neural networks depends strongly on the input structure and leads to the superior performance. Our preliminary experimental results on synthetic and real data also provide positive support.

It is well-known that deep neural networks (DNNs) are susceptible to adversarial attacks, exposing a severe fragility of deep learning systems. As the result, adversarial training (AT) method, by incorporating adversarial examples during training, represents a natural and effective approach to strengthen the robustness of a DNN-based classifier. However, most AT-based methods, notably PGD-AT and TRADES, typically seek a pointwise adversary that generates the worst-case adversarial example by independently perturbing each data sample, as a way to ``probe'' the vulnerability of the classifier. Arguably, there are unexplored benefits in considering such adversarial effects from an entire distribution. To this end, this paper presents a unified framework that connects Wasserstein distributional robustness with current state-of-the-art AT methods. We introduce a new Wasserstein cost function and a new series of risk functions, with which we show that standard AT methods are special cases of their counterparts in our framework. This connection leads to an intuitive relaxation and generalization of existing AT methods and facilitates the development of a new family of distributional robustness AT-based algorithms. Extensive experiments show that our distributional robustness AT algorithms robustify further their standard AT counterparts in various settings.

For real-time forecasting in domains like public health and macroeconomics, data collection is a non-trivial and demanding task. Often after being initially released, it undergoes several revisions later (maybe due to human or technical constraints) - as a result, it may take weeks until the data reaches a stable value. This so-called ‘backfill’ phenomenon and its effect on model performance have been barely addressed in the prior literature. In this paper, we introduce the multi-variate backfill problem using COVID-19 as the motivating example. We construct a detailed dataset composed of relevant signals over the past year of the pandemic. We then systematically characterize several patterns in backfill dynamics and leverage our observations for formulating a novel problem and neural framework, Back2Future, that aims to refines a given model's predictions in real-time. Our extensive experiments demonstrate that our method refines the performance of the diverse set of top models for COVID-19 forecasting and GDP growth forecasting. Specifically, we show that Back2Future refined top COVID-19 models by 6.65% to 11.24% and yield an 18% improvement over non-trivial baselines. In addition, we show that our model improves model evaluation too; hence policy-makers can better understand the true accuracy of forecasting models in real-time.

Recent studies have revealed that deep neural networks (DNNs) are vulnerable to backdoor attacks, where attackers embed hidden backdoors in the DNN model by poisoning a few training samples. The attacked model behaves normally on benign samples, whereas its prediction will be maliciously changed when the backdoor is activated. We reveal that poisoned samples tend to cluster together in the feature space of the attacked DNN model, which is mostly due to the end-to-end supervised training paradigm. Inspired by this observation, we propose a novel backdoor defense via decoupling the original end-to-end training process into three stages. Specifically, we first learn the backbone of a DNN model via \emph{self-supervised learning} based on training samples without their labels. The learned backbone will map samples with the same ground-truth label to similar locations in the feature space. Then, we freeze the parameters of the learned backbone and train the remaining fully connected layers via standard training with all (labeled) training samples. Lastly, to further alleviate side-effects of poisoned samples in the second stage, we remove labels of some `low-credible' samples determined based on the learned model and conduct a \emph{semi-supervised fine-tuning} of the whole model. Extensive experiments on multiple benchmark datasets and …

In this paper, we consider a new multi-armed bandit (MAB) framework motivated by three common complications in online recommender systems in practice: (i) the platform (learning agent) cannot sample an intended product directly and has to incentivize customers to select this product (e.g., promotions and coupons); (ii) customer feedbacks are often received later than their selection times; and (iii) customer preferences among products are influenced and reinforced by historical feedbacks. From the platform's perspective, the goal of the MAB framework is to maximize total reward without incurring excessive incentive costs. A major challenge of this MAB framework is that the loss of information caused by feedback delay complicates both user preference evolution and arm incentivizing decisions, both of which are already highly non-trivial even by themselves. Toward this end, we first propose a policy called ``UCB-Filtering-with-Delayed-Feedback'' (UCB-FDF) policy for this new MAB framework. In our analysis, we consider delayed feedbacks that can have either arm-independent or arm-dependent distributions. In both cases, we allow unbounded support for the random delays, i.e., the random delay can be infinite. We show that the delay impacts in both cases can still be upper bounded by an additive penalty on both the regret and total …
Universal value functions are a core component of off-policy multi-goal reinforcement learning. The de-facto paradigm is to approximate Q(s, a, g) using monolithic neural networks which lack inductive biases to produce complex interactions between the state s and the goal g. In this work, we propose a bilinear decomposition that represents the Q-value via a low-rank approximation in the form of a dot product between two vector fields. The first vector field, f(s, a), captures the environment's local dynamics at the state s; whereas the second component, ϕ(s, g), captures the global relationship between the current state and the goal.We show that our bilinear decomposition scheme improves sample efficiency over the original monolithic value approximators, and transfer better to unseen goals. We demonstrate significant learning speed-up over a variety of tasks on a simulated robot arm, and the challenging task of dexterous manipulation with a Shadow hand.

Conditional contrastive learning frameworks consider the conditional sampling procedure that constructs positive or negative data pairs conditioned on specific variables. Fair contrastive learning constructs negative pairs, for example, from the same gender (conditioning on sensitive information), which in turn reduces undesirable information from the learned representations; weakly supervised contrastive learning constructs positive pairs with similar annotative attributes (conditioning on auxiliary information), which in turn are incorporated into the representations. Although conditional contrastive learning enables many applications, the conditional sampling procedure can be challenging if we cannot obtain sufficient data pairs for some values of the conditioning variable. This paper presents Conditional Contrastive Learning with Kernel (CCL-K) that converts existing conditional contrastive objectives into alternative forms that mitigate the insufficient data problem. Instead of sampling data according to the value of the conditioning variable, CCL-K uses the Kernel Conditional Embedding Operator that samples data from all available data and assigns weights to each sampled data given the kernel similarity between the values of the conditioning variable. We conduct experiments using weakly supervised, fair, and hard negatives contrastive learning, showing CCL-K outperforms state-of-the-art baselines.

Implicit neural representations with multi-layer perceptrons (MLPs) have recently gained prominence for a wide variety of tasks such as novel view synthesis and 3D object representation and rendering. However, a significant challenge with these representations is that both training and inference with an MLP over a large number of input coordinates to learn and represent an image, video, or 3D object, require large amounts of computation and incur long processing times. In this work, we aim to accelerate inference and training of coordinate-based MLPs for implicit neural representations by proposing a new split MLP architecture, CoordX. With CoordX, the initial layers are split to learn each dimension of the input coordinates separately. The intermediate features are then fused by the last layers to generate the learned signal at the corresponding coordinate point. This significantly reduces the amount of computation required and leads to large speedups in training and inference, while achieving similar accuracy as the baseline MLP. This approach thus aims at first learning functions that are a decomposition of the original signal and then fusing them to generate the learned signal. Our proposed architecture can be generally used for many implicit neural representation tasks with no additional memory overheads. …

Creating labeled training sets has become one of the major roadblocks in machine learning. To address this, recent Weak Supervision (WS) frameworks synthesize training labels from multiple potentially noisy supervision sources. However, existing frameworks are restricted to supervision sources that share the same output space as the target task. To extend the scope of usable sources, we formulate Weak Indirect Supervision (WIS), a new research problem for automatically synthesizing training labels based on indirect supervision sources that have different output label spaces. To overcome the challenge of mismatched output spaces, we develop a probabilistic modeling approach, PLRM, which uses user-provided label relations to model and leverage indirect supervision sources. Moreover, we provide a theoretically-principled test of the distinguishability of PLRM for unseen labels, along with an generalization bound. On both image and text classification tasks as well as an industrial advertising application, we demonstrate the advantages of PLRM by outperforming baselines by a margin of 2%-9%.


Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features --- rationale --- which guides the model prediction. Unfortunately, the leading rationalization models often rely on data biases, especially shortcut features, to compose rationales and make predictions without probing the critical and causal patterns. Moreover, such data biases easily change outside the training distribution. As a result, these models suffer from a huge drop in interpretability and predictive performance on out-of-distribution data. In this work, we propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs. It conducts interventions on the training distribution to create multiple interventional distributions. Then it approaches the causal rationales that are invariant across different distributions while filtering out the spurious patterns that are unstable. Experiments on both synthetic and real-world datasets validate the superiority of our DIR in terms of interpretability and generalization ability on graph classification over the leading baselines. Code and datasets are available at https://github.com/Wuyxin/DIR-GNN.

We propose a framework to analyze how multivariate representations disentangle ground-truth generative factors. A quantitative analysis of disentanglement has been based on metrics designed to compare how one variable explains each generative factor. Current metrics, however, may fail to detect entanglement that involves more than two variables, e.g., representations that duplicate and rotate generative factors in high dimensional spaces. In this work, we establish a framework to analyze information sharing in a multivariate representation with Partial Information Decomposition and propose a new disentanglement metric. This framework enables us to understand disentanglement in terms of uniqueness, redundancy, and synergy. We develop an experimental protocol to assess how increasingly entangled representations are evaluated with each metric and confirm that the proposed metric correctly responds to entanglement. Through experiments on variational autoencoders, we find that models with similar disentanglement scores have a variety of characteristics in entanglement, for each of which a distinct strategy may be required to obtain a disentangled representation.

Deep neural network (DNN) model compression for efficient on-device inference is becoming increasingly important to reduce memory requirements and keep user data on-device. To this end, we propose a novel differentiable k-means clustering layer (DKM) and its application to train-time weight clustering-based DNN model compression. DKM casts k-means clustering as an attention problem and enables joint optimization of the DNN parameters and clustering centroids. Unlike prior works that rely on additional regularizers and parameters, DKM-based compression keeps the original loss function and model architecture fixed. We evaluated DKM-based compression on various DNN models for computer vision and natural language processing (NLP) tasks. Our results demonstrate that DKM delivers superior compression and accuracy trade-off on ImageNet1k and GLUE benchmarks. For example, DKM-based compression can offer 74.5% top-1 ImageNet1k accuracy on ResNet50 DNN model with 3.3MB model size (29.4x model compression factor). For MobileNet-v1, which is a challenging DNN to compress, DKM delivers 63.9% top-1 ImageNet1k accuracy with 0.72 MB model size (22.4x model compression factor). This result is 6.8% higher top-1accuracy and 33% relatively smaller model size than the current state-of-the-art DNN compression algorithms. Additionally, DKM enables compression of DistilBERT model by 11.8x with minimal (1.1%) accuracy loss on GLUE NLP …
Many practical modeling tasks require making predictions using tabular data composed of heterogeneous feature types (e.g., text-based, categorical, continuous, etc.). In this setting boosted decision trees and related ensembling techniques generally dominate real-world applications involving iid training/test sets. However, when there are relations between samples and the iid assumption is no longer reasonable, it remains unclear how to incorporate these dependencies within existing boosting pipelines. To this end, we propose a generalized framework for combining boosted trees and more general model ensembling techniques, with graph propagation layers that share node/sample information across edges connecting related samples. And unlike previous efforts to integrate graph-based models with boosting, our approach is anchored to a principled meta loss function such that provable convergence can be guaranteed under relatively mild assumptions. Across a variety of benchmarks involving non-iid graph data with tabular node features, our framework achieves comparable or superior performance.


Learning to reason about relations and dynamics over multiple interacting objects is a challenging topic in machine learning. The challenges mainly stem from that the interacting systems are exponentially-compositional, symmetrical, and commonly geometrically-constrained.Current methods, particularly the ones based on equivariant Graph Neural Networks (GNNs), have targeted on the first two challenges but remain immature for constrained systems. In this paper, we propose Graph Mechanics Network (GMN) which is combinatorially efficient, equivariant and constraint-aware. The core of GMN is that it represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object. In this manner, the geometrical constraints are implicitly and naturally encoded in the forward kinematics. Moreover, to allow equivariant message passing in GMN, we have developed a general form of orthogonality-equivariant functions, given that the dynamics of constrained systems are more complicated than the unconstrained counterparts. Theoretically, the proposed equivariant formulation is proved to be universally expressive under certain conditions. Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency on the simulated systems consisting of particles, sticks and hinges, as well as two real-world datasets for molecular dynamics prediction and human motion …

Recent work suggests that feature constraints in the training datasets of deep neural networks (DNNs) drive robustness to adversarial noise (Ilyas et al., 2019). The representations learned by such adversarially robust networks have also been shown to be more human perceptually-aligned than non-robust networks via image manipulations (Santurkar et al., 2019, Engstrom et al., 2019). Despite appearing closer to human visual perception, it is unclear if the constraints in robust DNN representations match biological constraints found in human vision. Human vision seems to rely on texture-based/summary statistic representations in the periphery, which have been shown to explain phenomena such as crowding (Balas et al., 2009) and performance on visual search tasks (Rosenholtz et al., 2012). To understand how adversarially robust optimizations/representations compare to human vision, we performed a psychophysics experiment using a metamer task similar to Freeman \& Simoncelli, 2011, Wallis et al., 2016 and Deza et al., 2019 where we evaluated how well human observers could distinguish between images synthesized to match adversarially robust representations compared to non-robust representations and a texture synthesis model of peripheral vision (Texforms a la Long et al., 2018). We found that the discriminability of robust representation and texture model images decreased to near …

Recent attempts at image steganography make use of advances in deep learning to train an encoder-decoder network pair to hide and retrieve secret messages in images. These methods are able to hide large amounts of data, but they also incur high decoding error rates (around 20%). In this paper, we propose a novel algorithm for steganography that takes advantage of the fact that neural networks are sensitive to tiny perturbations. Our method, Fixed Neural Network Steganography (FNNS), yields significantly lower error rates when compared to prior state-of-the-art methods and achieves 0% error reliably for hiding up to 3 bits per pixel (bpp) of secret information in images. FNNS also successfully evades existing statistical steganalysis systems and can be modified to evade neural steganalysis systems as well. Recovering every bit correctly, up to 3 bpp, enables novel applications that requires encryption. We introduce one specific use case for facilitating anonymized and safe image sharing. Our code is available at https://github.com/varshakishore/FNNS.

Goal-oriented Reinforcement Learning (GoRL) is a promising approach for scaling up RL techniques on sparse reward environments requiring long horizon planning. Recent works attempt to build suitable abstraction graph of the environment and enhance GoRL with classical graphical methods such as shortest path searching; however, these approaches mainly focus on either graph construction or agent exploitation, but leave the exploration lack of study. This paper proposes Graph-enhanced GoRL (G2RL), a new GoRL framework for effective exploration and efficient training based on the state-transition graph. We first introduce the optimal goals for exploration on the graph and then use them as supervised signals to train the goal generator in G2RL in a hindsight manner. Furthermore, we define relevant trajectories of a state based on its graph neighborhood and show that giving high priority to these trajectories would lead to an efficient policy learning. In addition to the theoretical results regarding optimal goal generation, our empirical results on standard discrete and continuous control benchmarks show that leveraging the state-transition graph is beneficial for GoRL to learn an effective and informative exploration strategy and outperform the state-of-the-art methods.


Prior works on self-supervised pre-training focus on the joint training scenario, where massive unlabeled data are assumed to be given as input all at once, and only then is a learner trained. Unfortunately, such a problem setting is often impractical if not infeasible since many real-world tasks rely on sequential learning, e.g., data are decentralized or collected in a streaming fashion. In this paper, we conduct the first thorough and dedicated investigation on self-supervised pre-training with streaming data, aiming to shed light on the model behavior under this overlooked setup. Specifically, we pre-train over 500 models on four categories of pre-training streaming data from ImageNet and DomainNet and evaluate them on three types of downstream tasks and 12 different downstream datasets. Our studies show that, somehow beyond our expectation, with simple data replay or parameter regularization, sequential self-supervised pre-training turns out to be an efficient alternative for joint pre-training, as the performances of the former are mostly on par with those of the latter. Moreover, catastrophic forgetting, a common issue in sequential supervised learning, is much alleviated in sequential self-supervised learning (SSL), which is well justified through our comprehensive empirical analysis on representations and the sharpness of minima in the …

The growing public concerns on data privacy in face recognition can be partly relieved by the federated learning (FL) paradigm. However, conventional FL methods usually perform poorly due to the particularity of the task, \textit{i.e.}, broadcasting class centers among clients is essential for recognition performances but leads to privacy leakage. To resolve the privacy-utility paradox, this work proposes PrivacyFace, a framework largely improves the federated learning face recognition via communicating auxiliary and privacy-agnostic information among clients. PrivacyFace mainly consists of two components: First, a practical Differentially Private Local Clustering (DPLC) mechanism is proposed to distill sanitized clusters from local class centers. Second, a consensus-aware recognition loss subsequently encourages global consensuses among clients, which ergo leads to more discriminative features. The proposed schemes are mathematically proved to be differential private, introduce a lightweight overhead as well as yield prominent performance boosts (\textit{e.g.}, +9.63\% and +10.26\% for TAR@FAR=1e-4 on IJB-B and IJB-C respectively). Extensive experiments and ablation studies on a large-scale dataset have demonstrated the efficacy and practicability of our method.

Prevailing methods for relation prediction in heterogeneous graphs aim at learning latent representations (i.e., embeddings) of observed nodes and relations, and thus are limited to the transductive setting where the relation types must be known during training. Here, we propose ANalogy SubGraphEmbeddingLearning (GraphANGEL), a novel relation prediction framework that predicts relations5between each node pair based on the subgraphs containing the pair, as well as other (analogy) subgraphs with the same graph patterns. Each graph pattern explicitly represents a specific logical rule, which contributes to an inductive bias that facilitates generalization to unseen relations and leads to more explainable predictive models. Moreover, our method also removes the limited neighborhood constraint of graph neural networks. Our model consistently outperforms existing models on heterogeneous graph based recommendation as well as knowledge graph completion. We also empirically demonstrate our model’s capability in generalizing to new relations while producing explainable heat maps of attention scores across the discovered logic.

Due to spurious correlations, machine learning systems often fail to generalize to environments whose distributions differ from the ones used at training time. Prior work addressing this, either explicitly or implicitly, attempted to find a data representation that has an invariant relationship with the target. This is done by leveraging a diverse set of training environments to reduce the effect of spurious features and build an invariant predictor. However, these methods have generalization guarantees only when both data representation and classifiers come from a linear model class. We propose invariant Causal Representation Learning (iCaRL), an approach that enables out-of-distribution (OOD) generalization in the nonlinear setting (i.e., nonlinear representations and nonlinear classifiers). It builds upon a practical and general assumption: the prior over the data representation (i.e., a set of latent variables encoding the data) given the target and the environment belongs to general exponential family distributions, i.e., a more flexible conditionally non-factorized prior that can actually capture complicated dependences between the latent variables. Based on this, we show that it is possible to identify the data representation up to simple transformations. We also show that all direct causes of the target can be fully discovered, which further enables us to …

Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks. When applied to semi-supervised node classification, GNNs are widely believed to work well due to the homophily assumption (``like attracts like''), and fail to generalize to heterophilous graphs where dissimilar nodes connect. Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion. In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than such carefully designed methods on some commonly used heterophilous graphs. This motivates us to reconsider whether homophily is truly necessary for good GNN performance. We find that this claim is not quite true, and in fact, GCNs can achieve strong performance on heterophilous graphs under certain conditions. Our work carefully characterizes these conditions and provides supporting theoretical understanding and empirical observations. Finally, we examine existing heterophilous graphs benchmarks and reconcile how the GCN (under)performs on them based on this understanding.
The right to be forgotten has been legislated in many countries, but its enforcement in the AI industry would cause unbearable costs. When single data deletion requests come, companies may need to delete the whole models learned with massive resources. Existing works propose methods to remove knowledge learned from data for explicitly parameterized models, which however are not appliable to the sampling-based Bayesian inference, {\it i.e.}, Markov chain Monte Carlo (MCMC), as MCMC can only infer implicit distributions. In this paper, we propose the first machine unlearning algorithm for MCMC. We first convert the MCMC unlearning problem into an explicit optimization problem. Based on this problem conversion, an {\it MCMC influence function} is designed to provably characterize the learned knowledge from data, which then delivers the MCMC unlearning algorithm. Theoretical analysis shows that MCMC unlearning would not compromise the generalizability of the MCMC models. Experiments on Gaussian mixture models and Bayesian neural networks confirm the effectiveness of the proposed algorithm. The code is available at \url{https://github.com/fshp971/mcmc-unlearning}.

Due to the remarkable progress of deep generative models, animating images has become increasingly efficient, whereas associated results have become increasingly realistic. Current animation-approaches commonly exploit structure representation extracted from driving videos. Such structure representation is instrumental in transferring motion from driving videos to still images. However, such approaches fail in case the source image and driving video encompass large appearance variation. Moreover, the extraction of structure information requires additional modules that endow the animation-model with increased complexity. Deviating from such models, we here introduce the Latent Image Animator (LIA), a self-supervised autoencoder that evades need for structure representation. LIA is streamlined to animate images by linear navigation in the latent space. Specifically, motion in generated video is constructed by linear displacement of codes in the latent space. Towards this, we learn a set of orthogonal motion directions simultaneously, and use their linear combination, in order to represent any displacement in the latent space. Extensive quantitative and qualitative analysis suggests that our model systematically and significantly outperforms state-of-art methods on VoxCeleb, Taichi and TED-talk datasets w.r.t. generated quality.

Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs. Code and ImageNet pretrained models …


The success of state-of-the-art deep neural networks heavily relies on the presence of large-scale labelled datasets, which are extremely expensive and time-consuming to annotate. This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN and labelling the generated images with an automatic annotator. In particular, we formulate the annotator learning as a learning-to-learn problem. Given a pre-trained GAN, the annotator learns to label object parts in a set of randomly generated images such that a part segmentation model trained on these synthetic images with their predicted labels obtains low segmentation error on a small validation set of manually labelled images. We further reduce this nested-loop optimization problem to a simple gradient matching problem and efficiently solve it with an iterative algorithm. We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images. Our method is evaluated with semi-supervised part segmentation tasks and significantly outperforms other semi-supervised competitors when the amount of labelled examples is extremely limited.

Code completion is usually cast as a language modelling problem, i.e., continuing an input in a left-to-right fashion. However, in practice, some parts of the completion (e.g., string literals) may be very hard to predict, whereas subsequent parts directly follow from the context.To handle this, we instead consider the scenario of generating code completions with "holes" inserted in places where a model is uncertain. We develop Grammformer, a Transformer-based model that guides the code generation by the programming language grammar, and compare it to a variety of more standard sequence models.We train the models on code completion for C# and Python given partial code context. To evaluate models, we consider both ROUGE as well as a new metric RegexAcc that measures success of generating completions matching long outputs with as few holes as possible.In our experiments, Grammformer generates 10-50% more accurate completions compared to traditional generative models and 37-50% longer sketches compared to sketch-generating baselines trained with similar techniques.


In contrast to single-objective optimization (SOO), multi-objective optimization (MOO) requires an optimizer to find the Pareto frontier, a subset of feasible solutions that are not dominated by other feasible solutions. In this paper, we propose LaMOO, a novel multi-objective optimizer that learns a model from observed samples to partition the search space and then focus on promising regions that are likely to contain a subset of the Pareto frontier. The partitioning is based on the dominance number, which measures "how close'' a data point is to the Pareto frontier among existing samples. To account for possible partition errors due to limited samples and model mismatch, we leverage Monte Carlo Tree Search (MCTS) to exploit promising regions while exploring suboptimal regions that may turn out to contain good solutions later. Theoretically, we prove the efficacy of learning space partitioning via LaMOO under certain assumptions. Empirically, on the HyperVolume (HV) benchmark, a popular MOO metric, LaMOO substantially outperforms strong baselines on multiple real-world MOO tasks, by up to 225% in sample efficiency for neural architecture search on Nasbench201, and up to 10% for molecular design.

Recent years have witnessed a surging interest in Neural Architecture Search (NAS). Various algorithms have been proposed to improve the search efficiency and effectiveness of NAS, i.e., to reduce the search cost and improve the generalization performance of the selected architectures, respectively. However, the search efficiency of these algorithms is severely limited by the need for model training during the search process. To overcome this limitation, we propose a novel NAS algorithm called NAS at Initialization (NASI) that exploits the capability of a Neural Tangent Kernel in being able to characterize the performance of candidate architectures at initialization, hence allowing model training to be completely avoided to boost the search efficiency. Besides the improved search efficiency, NASI also achieves competitive search effectiveness on various datasets like CIFAR-10/100 and ImageNet. Further, NASI is shown to be label- and data-agnostic under mild conditions, which guarantees the transferability of architectures selected by our NASI over different datasets.



This paper studies node classification in the inductive setting, i.e., aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs. This problem has been extensively studied with graph neural networks (GNNs) by learning effective node representations, as well as traditional structured prediction methods for modeling the structured output of node labels, e.g., conditional random fields (CRFs). In this paper, we present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds. SPN defines flexible potential functions of CRFs with GNNs. However, learning such a model is nontrivial as it involves optimizing a maximin game with high-cost inference. Inspired by the underlying connection between joint and marginal distributions defined by Markov networks, we propose to solve an approximate version of the optimization problem as a proxy, which yields a near-optimal solution, making learning more efficient. Extensive experiments on two settings show that our approach outperforms many competitive baselines.

We study the gradient flow optimization of over-parameterized neural networks (NNs) in a setup that allows feature learning while admitting non-asymptotic global convergence guarantees. First, we prove that for wide shallow NNs under the mean-field (MF) scaling and with a general class of activation functions, when the input dimension is at least the size of the training set, the training loss converges to zero at a linear rate under gradient flow. Building upon this analysis, we study a model of wide multi-layer NNs with random and untrained weights in earlier layers, and also prove a linear-rate convergence of the training loss to zero, regardless of the input dimension. We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.

A fundamental limitation of applying semi-supervised learning in real-world settings is the assumption that unlabeled test data contains only classes previously encountered in the labeled training data. However, this assumption rarely holds for data in-the-wild, where instances belonging to novel classes may appear at testing time. Here, we introduce a novel open-world semi-supervised learning setting that formalizes the notion that novel classes may appear in the unlabeled test data. In this novel setting, the goal is to solve the class distribution mismatch problem between labeled and unlabeled data, where at the test time every input instance either needs to be classified into one of the existing classes or a new unseen class needs to be initialized and the instance assigned to it. To tackle this challenging problem, we propose ORCA, an end-to-end approach that assigns instances to previously seen classes or forms novel classes by grouping similar instances without assuming any prior knowledge. The key idea in ORCA is to utilize uncertainty adaptive margin to circumvent the bias towards seen classes caused by learning seen classes faster than the novel classes. In this way, ORCA gradually increases the discriminability of the model during the training and reduces the gap between …

Machine learning systems often experience a distribution shift between training and testing. In this paper, we introduce a simple variational objective whose optima are exactly the set of all representations on which risk minimizers are guaranteed to be robust to any distribution shift that preserves the Bayes predictor, e.g., covariate shifts. Our objective has two components. First, a representation must remain discriminative for the task, i.e., some predictor must be able to simultaneously minimize the source and target risk. Second, the representation's marginal support needs to be the same across source and target. We make this practical by designing self-supervised objectives that only use unlabelled data and augmentations to train robust representations. Our objectives give insights into the robustness of CLIP, and further improve CLIP's representations to achieve SOTA results on DomainBed.

Online reinforcement learning (RL) can suffer from poor exploration, sparse reward, insufficient data, and overhead caused by inefficient interactions between an immature policy and a complicated environment. Model-based offline RL instead trains an environment model using a dataset of pre-collected experiences so online RL methods can learn in an offline manner by solely interacting with the model. However, the uncertainty and accuracy of the environment model can drastically vary across different state-action pairs so the RL agent may achieve high model return but perform poorly in the true environment. Unlike previous works that need to carefully tune the trade-off between the model return and uncertainty in a single objective, we study a bi-objective formulation for model-based offline RL that aims at producing a pool of diverse policies on the Pareto front performing different levels of trade-offs, which provides the flexibility to select the best policy for each realistic environment from the pool. Our method, ''Pareto policy pool (P3)'', does not need to tune the trade-off weight but can produce policies allocated at different regions of the Pareto front. For this purpose, we develop an efficient algorithm that solves multiple bi-objective optimization problems with distinct constraints defined by reference vectors targeting …

Transformer-based models have achieved great success in various NLP, vision, and speech tasks. However, the core of Transformer, the self-attention mechanism, has a quadratic time and memory complexity with respect to the sequence length, which hinders applications of Transformer-based models to long sequences. Many approaches have been proposed to mitigate this problem, such as sparse attention mechanisms, low-rank matrix approximations and scalable kernels, and token mixing alternatives to self-attention. We propose a novel Pooling Network (PoNet) for token mixing in long sequences with linear complexity. We design multi-granularity pooling and pooling fusion to capture different levels of contextual information and combine their interactions with tokens. On the Long Range Arena benchmark, PoNet significantly outperforms Transformer and achieves competitive accuracy, while being only slightly slower than the fastest model, FNet, across all sequence lengths measured on GPUs. We also conduct systematic studies on the transfer learning capability of PoNet and observe that PoNet achieves 95.7 percent of the accuracy of BERT on the GLUE benchmark, outperforming FNet by 4.5 percent relative. Comprehensive ablation analysis demonstrates effectiveness of the designed multi-granularity pooling and pooling fusion for token mixing in long sequences and efficacy of the designed pre-training tasks for PoNet to learn …

One of the key promises of model-based reinforcement learning is the ability to generalize using an internal model of the world to make predictions in novel environments and tasks. However, the generalization ability of model-based agents is not well understood because existing work has focused on model-free agents when benchmarking generalization. Here, we explicitly measure the generalization ability of model-based agents in comparison to their model-free counterparts. We focus our analysis on MuZero (Schrittwieser et al., 2020), a powerful model-based agent, and evaluate its performance on both procedural and task generalization. We identify three factors of procedural generalization---planning, self-supervised representation learning, and procedural data diversity---and show that by combining these techniques, we achieve state-of-the art generalization performance and data efficiency on Procgen (Cobbe et al., 2019). However, we find that these factors do not always provide the same benefits for the task generalization benchmarks in Meta-World (Yu et al., 2019), indicating that transfer remains a challenge and may require different approaches than procedural generalization. Overall, we suggest that building generalizable agents requires moving beyond the single-task, model-free paradigm and towards self-supervised model-based agents that are trained in rich, procedural, multi-task environments.

The tremendous amount of accessible data in cyberspace face the risk of being unauthorized used for training deep learning models. To address this concern, methods are proposed to make data unlearnable for deep learning models by adding a type of error-minimizing noise. However, such conferred unlearnability is found fragile to adversarial training. In this paper, we design new methods to generate robust unlearnable examples that are protected from adversarial training. We first find that the vanilla error-minimizing noise, which suppresses the informative knowledge of data via minimizing the corresponding training loss, could not effectively minimize the adversarial training loss. This explains the vulnerability of error-minimizing noise in adversarial training. Based on the observation, robust error-minimizing noise is then introduced to reduce the adversarial training loss. Experiments show that the unlearnability brought by robust error-minimizing noise can effectively protect data from adversarial training in various scenarios. The code is available at \url{https://github.com/fshp971/robust-unlearnable-examples}.

Guided image synthesis enables everyday users to create and edit photo-realistic images with minimum effort. The key challenge is balancing faithfulness to the user inputs (e.g., hand-drawn colored strokes) and realism of the synthesized images. Existing GAN-based methods attempt to achieve such balance using either conditional GANs or GAN inversions, which are challenging and often require additional training data or loss functions for individual applications. To address these issues, we introduce a new image synthesis and editing method, Stochastic Differential Editing (SDEdit), based on a diffusion model generative prior, which synthesizes realistic images by iteratively denoising through a stochastic differential equation (SDE). Given an input image with user guide in a form of manipulating RGB pixels, SDEdit first adds noise to the input, then subsequently denoises the resulting image through the SDE prior to increase its realism. SDEdit does not require task-specific training or inversions and can naturally achieve the balance between realism and faithfulness. SDEdit outperforms state-of-the-art GAN-based methods by up to 98.09% on realism and 91.72% on overall satisfaction scores, according to a human perception study, on multiple tasks, including stroke-based image synthesis and editing as well as image compositing.

In most settings of practical concern, machine learning practitioners know in advance what end-task they wish to boost with auxiliary tasks. However, widely used methods for leveraging auxiliary data like pre-training and its continued-pretraining variant are end-task agnostic: they rarely, if ever, exploit knowledge of the target task. We study replacing end-task agnostic continued training of pre-trained language models with end-task aware training of said models. We argue that for sufficiently important end-tasks, the benefits of leveraging auxiliary data in a task-aware fashion can justify forgoing the traditional approach of obtaining generic, end-task agnostic representations as with (continued) pre-training. On three different low-resource NLP tasks from two domains, we demonstrate that multi-tasking the end-task and auxiliary objectives results in significantly better downstream task performance than the widely-used task-agnostic continued pre-training paradigm of Gururangan et al. (2020).We next introduce an online meta-learning algorithm that learns a set of multi-task weights to better balance among our multiple auxiliary objectives, achieving further improvements on end-task performance and data efficiency.

With recent progress in joint modeling of visual and textual representations, Vision-Language Pretraining (VLP) has achieved impressive performance on many multimodal downstream tasks. However, the requirement for expensive annotations including clean image captions and regional labels limits the scalability of existing approaches, and complicates the pretraining procedure with the introduction of multiple dataset-specific objectives. In this work, we relax these constraints and present a minimalist pretraining framework, named Simple Visual Language Model (SimVLM). Unlike prior work, SimVLM reduces the training complexity by exploiting large-scale weak supervision, and is trained end-to-end with a single prefix language modeling objective. Without utilizing extra data or task-specific customization, the resulting model significantly outperforms previous pretraining methods and achieves new state-of-the-art results on a wide range of discriminative and generative vision-language benchmarks, including VQA (+3.74% vqa-score), NLVR2 (+1.17% accuracy), SNLI-VE (+1.37% accuracy) and image captioning tasks (+10.1% average CIDEr score). Furthermore, we demonstrate that SimVLM acquires strong generalization and transfer ability, enabling zero-shot behavior including open-ended visual question answering and cross-modality transfer.

While deep reinforcement learning methods have shown impressive results in robot learning, their sample inefficiency makes the learning of complex, long-horizon behaviors with real robot systems infeasible. To mitigate this issue, meta-reinforcement learning methods aim to enable fast learning on novel tasks by learning how to learn. Yet, the application has been limited to short-horizon tasks with dense rewards. To enable learning long-horizon behaviors, recent works have explored leveraging prior experience in the form of offline datasets without reward or task annotations. While these approaches yield improved sample efficiency, millions of interactions with environments are still required to solve complex tasks. In this work, we devise a method that enables meta-learning on long-horizon, sparse-reward tasks, allowing us to solve unseen target tasks with orders of magnitude fewer environment interactions. Our core idea is to leverage prior experience extracted from offline datasets during meta-learning. Specifically, we propose to (1) extract reusable skills and a skill prior from offline datasets, (2) meta-train a high-level policy that learns to efficiently compose learned skills into long-horizon behaviors, and (3) rapidly adapt the meta-trained policy to solve an unseen target task. Experimental results on continuous control tasks in navigation and manipulation demonstrate that the proposed …

Transformer has become ubiquitous in sequence modeling tasks. As a key component of Transformer, self-attention does not scale to long sequences due to its quadratic time and space complexity with respect to the sequence length. To tackle this problem, recent work developed dynamic attention sparsification techniques based on Approximate Nearest Neighbor (ANN) methods, where similar queries and keys are allocated to the same hash bucket with high probability. However, the effectiveness of those ANN methods relies on the assumption that queries and keys should lie in the same space, which is not well justified. Besides, some of the ANN methods such as Locality-Sensitive Hashing (LSH) are randomized and cannot fully utilize the available real data distributions. To overcome these issues, this paper proposes a new strategy for sparse attention, namely LHA (Learning-to-Hash Attention), which directly learns separate parameterized hash functions for queries and keys, respectively. Another advantage of LHA is that it does not impose extra constraints for queries and keys, which makes it applicable to the wide range of pre-trained Transformer models. Our experiments on evaluation of the WikiText-103 dataset for language modeling, the GLUE benchmark for natural language understanding, and the Lang-Range-Arena benchmark for multiple tasks (text/image classification, …
The noise in stochastic gradient descent (SGD), caused by minibatch sampling, is poorly understood despite its practical importance in deep learning. This work presents the first systematic study of the SGD noise and fluctuations close to a local minimum. We first analyze the SGD noise in linear regression in detail and then derive a general formula for approximating SGD noise in different types of minima. For application, our results (1) provide insight into the stability of training a neural network, (2) suggest that a large learning rate can help generalization by introducing an implicit regularization, (3) explain why the linear learning rate-batchsize scaling law fails at a large learning rate or at a small batchsize and (4) can provide an understanding of how discrete-time nature of SGD affects the recently discovered power-law phenomenon of SGD.

Preference-based reinforcement learning (RL) has shown potential for teaching agents to perform the target tasks without a costly, pre-defined reward function by learning the reward with a supervisor’s preference between the two agent behaviors. However, preference-based learning often requires a large amount of human feedback, making it difficult to apply this approach to various applications. This data-efficiency problem, on the other hand, has been typically addressed by using unlabeled samples or data augmentation techniques in the context of supervised learning. Motivated by the recent success of these approaches, we present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation. In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor. To further improve the label-efficiency of reward learning, we introduce a new data augmentation that temporally crops consecutive subsequences from the original behaviors. Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the state-of-the-art preference-based method on a variety of locomotion and robotic manipulation tasks.

Spatial convolutions are widely used in numerous deep video models. It fundamentally assumes spatio-temporal invariance, i.e., using shared weights for every location in different frames. This work presents Temporally-Adaptive Convolutions (TAdaConv) for video understanding, which shows that adaptive weight calibration along the temporal dimension is an efficient way to facilitate modelling complex temporal dynamics in videos. Specifically, TAdaConv empowers the spatial convolutions with temporal modelling abilities by calibrating the convolution weights for each frame according to its local and global temporal context. Compared to previous temporal modelling operations, TAdaConv is more efficient as it operates over the convolution kernels instead of the features, whose dimension is an order of magnitude smaller than the spatial resolutions. Further, the kernel calibration brings an increased model capacity. We construct TAda2D and TAdaConvNeXt networks by replacing the 2D convolutions in ResNet and ConvNeXt with TAdaConv, which leads to at least on par or better performance compared to state-of-the-art approaches on multiple video action recognition and localization benchmarks. We also demonstrate that as a readily plug-in operation with negligible computation overhead, TAdaConv can effectively improve many existing video models with a convincing margin.

Semi-supervised learning (SSL) has demonstrated its potential to improve the model accuracy for a variety of learning tasks when the high-quality supervised data is severely limited. Although it is often established that the average accuracy for the entire population of data is improved, it is unclear how SSL fares with different sub-populations. Understanding the above question has substantial fairness implications when different sub-populations are defined by the demographic groups that we aim to treat fairly. In this paper, we reveal the disparate impacts of deploying SSL: the sub-population who has a higher baseline accuracy without using SSL (the "rich" one) tends to benefit more from SSL; while the sub-population who suffers from a low baseline accuracy (the "poor" one) might even observe a performance drop after adding the SSL module. We theoretically and empirically establish the above observation for a broad family of SSL algorithms, which either explicitly or implicitly use an auxiliary "pseudo-label". Experiments on a set of image and text classification tasks confirm our claims. We introduce a new metric, Benefit Ratio, and promote the evaluation of the fairness of SSL (Equalized Benefit Ratio). We further discuss how the disparate impact can be mitigated. We hope our paper …

Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL). Despite the community's increasing interest, there lacks a formal theoretical formulation for the problem. In this paper, we propose such a formulation for deployment-efficient RL (DE-RL) from an ''optimization with constraints'' perspective: we are interested in exploring an MDP and obtaining a near-optimal policy within minimal \emph{deployment complexity}, whereas in each deployment the policy can sample a large batch of data. Using finite-horizon linear MDPs as a concrete structural model, we reveal the fundamental limit in achieving deployment efficiency by establishing information-theoretic lower bounds, and provide algorithms that achieve the optimal deployment efficiency. Moreover, our formulation for DE-RL is flexible and can serve as a building block for other practically relevant settings; we give ''Safe DE-RL'' and ''Sample-Efficient DE-RL'' as two examples, which may be worth future investigation.


Generalization is one of the fundamental issues in machine learning. However, traditional techniques like uniform convergence may be unable to explain generalization under overparameterization \citep{nagarajan2019uniform}. As alternative approaches, techniques based on stability analyze the training dynamics and derive algorithm-dependent generalization bounds. Unfortunately, the stability-based bounds are still far from explaining the surprising generalization in deep learning since neural networks usually suffer from unsatisfactory stability. This paper proposes a novel decomposition framework to improve the stability-based bounds via a more fine-grained analysis of the signal and noise, inspired by the observation that neural networks converge relatively slowly when fitting noise (which indicates better stability). Concretely, we decompose the excess risk dynamics and apply the stability-based bound only on the noise component. The decomposition framework performs well in both linear regimes (overparameterized linear regression) and non-linear regimes (diagonal matrix recovery). Experiments on neural networks verify the utility of the decomposition framework.

Humans decompose novel complex tasks into simpler ones to exploit previously learned skills. Analogously, hierarchical reinforcement learning seeks to leverage lower-level policies for simple tasks to solve complex ones. However, because each lower-level policy induces a different distribution of states, transitioning from one lower-level policy to another may fail due to an unexpected starting state. We introduce transition policies that smoothly connect lower-level policies by producing a distribution of states and actions that matches what is expected by the next policy. Training transition policies is challenging because the natural reward signal---whether the next policy can execute its subtask successfully---is sparse. By training transition policies via adversarial inverse reinforcement learning to match the distribution of expected states and actions, we avoid relying on task-based reward. To further improve performance, we use deep Q-learning with a binary action space to determine when to switch from a transition policy to the next pre-trained policy, using the success or failure of the next subtask as the reward. Although the reward is still sparse, the problem is less severe due to the simple binary action space. We demonstrate our method on continuous bipedal locomotion and arm manipulation tasks that require diverse skills. We show that …

The neural Hawkes process (Mei & Eisner, 2017) is a generative model of irregularly spaced sequences of discrete events. To handle complex domains with many event types, Mei et al. (2020a) further consider a setting in which each event in the sequence updates a deductive database of facts (via domain-specific pattern-matching rules); future events are then conditioned on the database contents. They show how to convert such a symbolic system into a neuro-symbolic continuous-time generative model, in which each database fact and possible event has a time-varying embedding that is derived from its symbolic provenance. In this paper, we modify both models, replacing their recurrent LSTM-based architectures with flatter attention-based architectures (Vaswani et al., 2017), which are simpler and more parallelizable. This does not appear to hurt our accuracy, which is comparable to or better than that of the original models as well as (where applicable) previous attention-based methods (Zuo et al., 2020; Zhang et al., 2020a).

Multiple views of data, both naturally acquired (e.g., image and audio) and artificially produced (e.g., via adding different noise to data samples), have proven useful in enhancing representation learning. Natural views are often handled by multiview analysis tools, e.g., (deep) canonical correlation analysis [(D)CCA], while the artificial ones are frequently used in self-supervised learning (SSL) paradigms, e.g., BYOL and Barlow Twins. Both types of approaches often involve learning neural feature extractors such that the embeddings of data exhibit high cross-view correlations. Although intuitive, the effectiveness of correlation-based neural embedding is mostly empirically validated. This work aims to understand latent correlation maximization-based deep multiview learning from a latent component identification viewpoint. An intuitive generative model of multiview data is adopted, where the views are different nonlinear mixtures of shared and private components. Since the shared components are view/distortion-invariant, representing the data using such components is believed to reveal the identity of the samples effectively and robustly. Under this model, latent correlation maximization is shown to guarantee the extraction of the shared components across views (up to certain ambiguities). In addition, it is further shown that the private information in each view can be provably disentangled from the shared using proper regularization …

Out-of-distribution (OOD) detection has received much attention lately due to its importance in the safe deployment of neural networks. One of the key challenges is that models lack supervision signals from unknown data, and as a result, can produce overconfident predictions on OOD data. Previous approaches rely on real outlier datasets for model regularization, which can be costly and sometimes infeasible to obtain in practice. In this paper, we present VOS, a novel framework for OOD detection by adaptively synthesizing virtual outliers that can meaningfully regularize the model's decision boundary during training. Specifically, VOS samples virtual outliers from the low-likelihood region of the class-conditional distribution estimated in the feature space. Alongside, we introduce a novel unknown-aware training objective, which contrastively shapes the uncertainty space between the ID data and synthesized outlier data. VOS achieves competitive performance on both object detection and image classification models, reducing the FPR95 by up to 7.87% compared to the previous best method on object detectors. Code is available at https://github.com/deeplearning-wisc/vos.


One of the challenges of graph-based semi-supervised learning over ordinary supervised learning for classification tasks lies in label utilization. The direct use of ground-truth labels in graphs for training purposes can result in a parametric model learning trivial degenerate solutions (e.g., an identity mapping from input to output). In addressing this issue, a label trick has recently been proposed in the literature and applied to a wide range of graph neural network (GNN) architectures, achieving state-of-the-art results on various datasets. The essential idea is to randomly split the observed labels on the graph and use a fraction of them as input to the model (along with original node features), and predict the remaining fraction. Despite its success in enabling GNNs to propagate features and labels simultaneously, this approach has never been analyzed from a theoretical perspective, nor fully explored across certain natural use cases. In this paper, we demonstrate that under suitable settings, this stochastic trick can be reduced to a more interpretable deterministic form, allowing us to better explain its behavior, including an emergent regularization effect, and motivate broader application scenarios. Our experimental results corroborate these analyses while also demonstrating improved node classification performance applying the label trick in …
Invited Talk: Cordelia Schmid
Do you see what I see? Large-scale learning from multimodal videos
In this talk, we present recent progress on large-scale learning of multimodal video representations. We start by presenting VideoBert, a joint model for video and language, repurposing the Bert model for multimodal data. This model achieves state-of-the-art results on zero shot prediction and video captioning. Next, we present an approach for video question answering which relies on training from instruction videos and cross-modal supervision with a textual question answer module. We show state-of-the-art results for video question answering without any supervision (zero-shot VQA) and demonstrate that our approach obtains competitive results for pre-training and then fine-tuning on video question answering datasets. We conclude our talk by presenting the recent VideoCC dataset, which transfers image captions to video and allows obtaining state-of-the-art performance for zero-shot video and audio retrieval and video captioning.
Bio :
Poster Session 7 Wed 27 Apr 09:30 a.m.
[ Virtual ]

State-of-the-art neural network verifiers are fundamentally based on one of two paradigms: either encoding the whole verification problem via tight multi-neuron convex relaxations or applying a Branch-and-Bound (BaB) procedure leveraging imprecise but fast bounding methods on a large number of easier subproblems. The former can capture complex multi-neuron dependencies but sacrifices completeness due to the inherent limitations of convex relaxations. The latter enables complete verification but becomes increasingly ineffective on larger and more challenging networks. In this work, we present a novel complete verifier which combines the strengths of both paradigms: it leverages multi-neuron relaxations to drastically reduce the number of subproblems generated during the BaB process and an efficient GPU-based dual optimizer to solve the remaining ones. An extensive evaluation demonstrates that our verifier achieves a new state-of-the-art on both established benchmarks as well as networks with significantly higher accuracy than previously considered. The latter result (up to 28% certification gains) indicates meaningful progress towards creating verifiers that can handle practically relevant networks.
[ Virtual ]

Stochastic Variational Inference is a powerful framework for learning large-scale probabilistic latent variable models. However, typical assumptions on the factorization or independence of the latent variables can substantially restrict its capacity for inference and generative modeling. A major line of active research aims at building more expressive variational models by designing deep hierarchies of interdependent latent variables. Although these models exhibit superior performance and enable richer latent representations, we show that they incur diminishing returns: adding more stochastic layers to an already very deep model yields small predictive improvement while substantially increasing the inference and training time. Moreover, the architecture for this class of models favors local interactions among the latent variables between neighboring layers when designing the conditioning factors of the involved distributions. This is the first work that proposes attention mechanisms to build more expressive variational distributions in deep probabilistic models by explicitly modeling both local and global interactions in the latent space. Specifically, we propose deep attentive variational autoencoder and test it on a variety of established datasets. We show it achieves state-of-the-art log-likelihoods while using fewer latent layers and requiring less training time than existing models. The proposed non-local inference reduces computational footprint by alleviating the …
[ Virtual ]

Dealing with missing values and incomplete time series is a labor-intensive, tedious, inevitable task when handling data coming from real-world applications. Effective spatio-temporal representations would allow imputation methods to reconstruct missing temporal data by exploiting information coming from sensors at different locations. However, standard methods fall short in capturing the nonlinear time and space dependencies existing within networks of interconnected sensors and do not take full advantage of the available - and often strong - relational information. Notably, most state-of-the-art imputation methods based on deep learning do not explicitly model relational aspects and, in any case, do not exploit processing frameworks able to adequately represent structured spatio-temporal data. Conversely, graph neural networks have recently surged in popularity as both expressive and scalable tools for processing sequential data with relational inductive biases. In this work, we present the first assessment of graph neural networks in the context of multivariate time series imputation. In particular, we introduce a novel graph neural network architecture, named GRIN, which aims at reconstructing missing data in the different channels of a multivariate time series by learning spatio-temporal representations through message passing. Empirical results show that our model outperforms state-of-the-art methods in the imputation task on relevant …
[ Virtual ]

We consider the problem of unsupervised domain adaptation (UDA) between a source and a target domain under conditional and label shift a.k.a Generalized Target Shift (GeTarS). Unlike simpler UDA settings, few works have addressed this challenging problem. Recent approaches learn domain-invariant representations, yet they have practical limitations and rely on strong assumptions that may not hold in practice. In this paper, we explore a novel and general approach to align pretrained representations, which circumvents existing drawbacks. Instead of constraining representation invariance, it learns an optimal transport map, implemented as a NN, which maps source representations onto target ones. Our approach is flexible and scalable, it preserves the problem's structure and it has strong theoretical guarantees under mild assumptions. In particular, our solution is unique, matches conditional distributions across domains, recovers target proportions and explicitly controls the target generalization risk. Through an exhaustive comparison on several datasets, we challenge the state-of-the-art in GeTarS.
[ Virtual ]

In Multiple Instance Learning (MIL), models are trained using bags of instances, where only a single label is provided for each bag. A bag label is often only determined by a handful of key instances within a bag, making it difficult to interpret what information a classifier is using to make decisions. In this work, we establish the key requirements for interpreting MIL models. We then go on to develop several model-agnostic approaches that meet these requirements. Our methods are compared against existing inherently interpretable MIL models on several datasets, and achieve an increase in interpretability accuracy of up to 30%. We also examine the ability of the methods to identify interactions between instances and scale to larger datasets, improving their applicability to real-world problems.
[ Virtual ]

Learning a good transfer function to map the word vectors from two languages into a shared cross-lingual word vector space plays a crucial role in cross-lingual NLP. It is useful in translation tasks and important in allowing complex models built on a high-resource language like English to be directly applied on an aligned low resource language. While Procrustes and other techniques can align language models with some success, it has recently been identified that structural differences (for instance, due to differing word frequency) create different profiles for various monolingual embedding. When these profiles differ across languages, it correlates with how well languages can align and their performance on cross-lingual downstream tasks. In this work, we develop a very general language embedding normalization procedure, building and subsuming various previous approaches, which removes these structural profiles across languages without destroying their intrinsic meaning. We demonstrate that meaning is retained and alignment is improved on similarity, translation, and cross-language classification tasks. Our proposed normalization clearly outperforms all prior approaches like centering and vector normalization on each task and with each alignment approach.
[ Virtual ]
Searching for the architecture cells is a dominant paradigm in NAS. However, little attention has been devoted to the analysis of the cell-based search spaces even though it is highly important for the continual development of NAS. In this work, we conduct an empirical post-hoc analysis of architectures from the popular cell-based search spaces and find that the existing search spaces contain a high degree of redundancy: the architecture performance is less sensitive to changes at large parts of the cells, and universally adopted design rules, like the explicit search for a reduction cell, significantly increase the complexities but have very limited impact on the performance.Across architectures found by a diverse set of search strategies, we consistently find that the parts of the cells that do matter for architecture performance often follow similar and simple patterns. By constraining cells to include these patterns, randomly sampled architectures can match or even outperform the state of the art.These findings cast doubts into our ability to discover truly novel architectures in the existing cell-based search spaces and, inspire our suggestions for improvement to guide future NAS research.Code is available at https://github.com/xingchenwan/cell-based-NAS-analysis.
[ Virtual ]

[ Virtual ]

Solving goal-conditioned tasks with sparse rewards using self-supervised learning is promising because of its simplicity and stability over current reinforcement learning (RL) algorithms. A recent work, called Goal-Conditioned Supervised Learning (GCSL), provides a new learning framework by iteratively relabeling and imitating self-generated experiences. In this paper, we revisit the theoretical property of GCSL --- optimizing a lower bound of the goal reaching objective, and extend GCSL as a novel offline goal-conditioned RL algorithm. The proposed method is named Weighted GCSL (WGCSL), in which we introduce an advanced compound weight consisting of three parts (1) discounted weight for goal relabeling, (2) goal-conditioned exponential advantage weight, and (3) best-advantage weight. Theoretically, WGCSL is proved to optimize an equivalent lower bound of the goal-conditioned RL objective and generates monotonically improved policies via an iterated scheme. The monotonic property holds for any behavior policies, and therefore WGCSL can be applied to both online and offline settings. To evaluate algorithms in the offline goal-conditioned RL setting, we provide a benchmark including a range of point and simulated robot domains. Experiments in the introduced benchmark demonstrate that WGCSL can consistently outperform GCSL and existing state-of-the-art offline methods in the fully offline goal-conditioned setting.
[ Virtual ]

In recent years, implicit deep learning has emerged as a method to increase the depth of deep neural networks. While their training is memory-efficient, they are still significantly slower to train than their explicit counterparts. In Deep Equilibrium Models~(DEQs), the training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix. In this paper, we propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer. The main idea is to use the quasi-Newton matrices from the forward pass to efficiently approximate the inverse Jacobian matrix in the direction needed for the gradient computation. We provide a theorem that motivates using our method with the original forward algorithms. In addition, by modifying these forward algorithms, we further provide theoretical guarantees that our method asymptotically estimates the true implicit gradient. We empirically study this approach in many settings, ranging from hyperparameter optimization to large Multiscale DEQs applied to CIFAR and ImageNet. We show that it reduces the computational cost of the backward pass by up to two orders of magnitude. All this is achieved while retaining the excellent performance of the original models in hyperparameter …
[ Virtual ]

Despite progress across a broad range of applications, Transformers have limited success in systematic generalization. The situation is especially frustrating in the case of algorithmic tasks, where they often fail to find intuitive solutions that route relevant information to the right node/operation at the right time in the grid represented by Transformer columns. To facilitate the learning of useful control flow, we propose two modifications to the Transformer architecture, copy gate and geometric attention. Our novel Neural Data Router (NDR) achieves 100% length generalization accuracy on the classic compositional table lookup task, as well as near-perfect accuracy on the simple arithmetic task and a new variant of ListOps testing for generalization across computational depths. NDR’s attention and gating patterns tend to be interpretable as an intuitive form of neural routing


How does the geometric representation of a dataset change after the application of each randomly initialized layer of a neural network? The celebrated Johnson-Lindenstrauss lemma answers this question for linear fully-connected neural networks (FNNs), stating that the geometry is essentially preserved. For FNNs with the ReLU activation, the angle between two input contracts according to a known mapping. The question for non-linear convolutional neural networks (CNNs) becomes much more intricate. To answer this question, we introduce a geometric framework. For linear CNNs, we show that the Johnson--Lindenstrauss lemma continues to hold, namely, that the angle between two inputs is preserved. For CNNs with ReLU activation, on the other hand, the behavior is richer: The angle between the outputs contracts, where the level of contraction depends on the nature of the inputs. In particular, after one layer, the geometry of natural images is essentially preserved, whereas for Gaussian correlated inputs, CNNs exhibit the same contracting behavior as FNNs with ReLU activation.

We consider the task of finding out-of-class samples in tabular data, where little can be assumed on the structure of the data. In order to capture the structure of the samples of the single training class, we learn mappings that maximize the mutual information between each sample and the part that is masked out. The mappings are learned by employing a contrastive loss, which considers only one sample at a time. Once learned, we can score a test sample by measuring whether the learned mappings lead to a small contrastive loss using the masked parts of this sample. Our experiments show that our method leads by a sizable accuracy gap in comparison to the literature and that the same default set of hyperparameters provides state-of-the-art results across benchmarks.

A recent line of work on black-box adversarial attacks has revived the use of transfer from surrogate models by integrating it into query-based search. However, we find that existing approaches of this type underperform their potential, and can be overly complicated besides. Here, we provide a short and simple algorithm which achieves state-of-the-art results through a search which uses the surrogate network's class-score gradients, with no need for other priors or heuristics. The guiding assumption of the algorithm is that the studied networks are in a fundamental sense learning similar functions, and that a transfer attack from one to the other should thus be fairly "easy". This assumption is validated by the extremely low query counts and failure rates achieved: e.g. an untargeted attack on a VGG-16 ImageNet network using a ResNet-152 as the surrogate yields a median query count of 6 at a success rate of 99.9%. Code is available at https://github.com/fiveai/GFCS.

Text-based games (TBG) have emerged as promising environments for driving research in grounded language understanding and studying problems like generalization and sample efficiency. Several deep reinforcement learning (RL) methods with varying architectures and learning schemes have been proposed for TBGs. However, these methods fail to generalize efficiently, especially under distributional shifts. In a departure from deep RL approaches, in this paper, we propose a general method inspired by case-based reasoning to train agents and generalize out of the training distribution. The case-based reasoner collects instances of positive experiences from the agent's interaction with the world and later reuses the collected experiences to act efficiently. The method can be used in conjunction with any existing on-policy neural agent introduced in the literature for TBGs. Our experiments show that the proposed approach consistently improves existing methods, obtains good out-of-distribution generalization and achieves new state-of-the-art results on widely used environments.

Conditional neural networks play an important role in a number of sequence-to-sequence modeling tasks, including personalized sound enhancement (PSE), speaker dependent automatic speech recognition (ASR), and generative modeling such as text-to-speech synthesis. In conditional neural networks, the output of a model is often influenced by a conditioning vector, in addition to the input. Common approaches of conditioning include input concatenation or modulation with the conditioning vector, which comes at a cost of increased model size. In this work, we introduce a novel approach of neural network conditioning by learning intermediate layer activations based on the conditioning vector. We systematically explore and show that learned activation functions can produce conditional models with comparable or better quality, while decreasing model sizes, thus making them ideal candidates for resource-efficient on-device deployment. As exemplary target use-cases we consider (i) the task of PSE as a pre-processing technique for improving telephony or pre-trained ASR performance under noise, and (ii) personalized ASR in single speaker scenarios. We find that conditioning via activation function learning is an effective modeling strategy, suggesting a broad applicability of the proposed technique across a number of application domains.

Transformer has shown great successes in natural language processing, computer vision, and audio processing. As one of its core components, the softmax attention helps to capture long-range dependencies yet prohibits its scale-up due to the quadratic space and time complexity to the sequence length. Kernel methods are often adopted to reduce the complexity by approximating the softmax operator. Nevertheless, due to the approximation errors, their performances vary in different tasks/corpus and suffer crucial performance drops when compared with the vanilla softmax attention. In this paper, we propose a linear transformer called cosFormer that can achieve comparable or better accuracy to the vanilla transformer in both casual and cross attentions. cosFormer is based on two key properties of softmax attention: i). non-negativeness of the attention matrix; ii). a non-linear re-weighting scheme that can concentrate the distribution of the attention matrix. As its linear substitute, cosFormer fulfills these properties with a linear operator and a cosine-based distance re-weighting mechanism. Extensive experiments on language modeling and text understanding tasks demonstrate the effectiveness of our method. We further examine our method on long sequences and achieve state-of-the-art performance on the Long-Range Arena benchmark. The source code is available at https://github.com/OpenNLPLab/cosFormer.


A large number of studies that analyze deep neural network models and their ability to encode various linguistic and non-linguistic concepts provide an interpretation of the inner mechanics of these models. The scope of the analyses is limited to pre-defined concepts that reinforce the traditional linguistic knowledge and do not reflect on how novel concepts are learned by the model. We address this limitation by discovering and analyzing latent concepts learned in neural network models in an unsupervised fashion and provide interpretations from the model's perspective. In this work, we study: i) what latent concepts exist in the pre-trained BERT model, ii) how the discovered latent concepts align or diverge from classical linguistic hierarchy and iii) how the latent concepts evolve across layers. Our findings show: i) a model learns novel concepts (e.g. animal categories and demographic groups), which do not strictly adhere to any pre-defined categorization (e.g. POS, semantic tags), ii) several latent concepts are based on multiple properties which may include semantics, syntax, and morphology, iii) the lower layers in the model dominate in learning shallow lexical concepts while the higher layers learn semantic relations and iv) the discovered latent concepts highlight potential biases learned in the model. …

The goal of the paper is to design active learning strategies which lead to domain adaptation under an assumption of Lipschitz functions. Building on previous work by Mansour et al. (2009) we adapt the concept of discrepancy distance between source and target distributions to restrict the maximization over the hypothesis class to a localized class of functions which are performing accurate labeling on the source domain. We derive generalization error bounds for such active learning strategies in terms of Rademacher average and localized discrepancy for general loss functions which satisfy a regularity condition. A practical K-medoids algorithm that can address the case of large data set is inferred from the theoretical bounds. Our numerical experiments show that the proposed algorithm is competitive against other state-of-the-art active learning techniques in the context of domain adaptation, in particular on large data sets of around one hundred thousand images.

Principal component analysis is a simple yet useful dimensionality reduction technique in modern machine learning pipelines. In consequential domains such as college admission, healthcare and credit approval, it is imperative to take into account emerging criteria such as the fairness and the robustness of the learned projection. In this paper, we propose a distributionally robust optimization problem for principal component analysis which internalizes a fairness criterion in the objective function. The learned projection thus balances the trade-off between the total reconstruction error and the reconstruction error gap between subgroups, taken in the min-max sense over all distributions in a moment-based ambiguity set. The resulting optimization problem over the Stiefel manifold can be efficiently solved by a Riemannian subgradient descent algorithm with a sub-linear convergence rate. Our experimental results on real-world datasets show the merits of our proposed method over state-of-the-art baselines.

There is a widespread intuition that model-based control methods should be able to surpass the data efficiency of model-free approaches. In this paper we attempt to evaluate this intuition on various challenging locomotion tasks. We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning; the learned policy serves as a proposal for MPC. We show that MPC with learned proposals and models (trained on the fly or transferred from related tasks) can significantly improve performance and data efficiency with respect to model-free methods. However, we find that well-tuned model-free agents are strong baselines even for high DoF control problems. Finally, we show that it is possible to distil a model-based planner into a policy that amortizes the planning computation without any loss of performance.

Computing the matrix square root or its inverse in a differentiable manner is important in a variety of computer vision tasks. Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the forward pass or in the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad\'e Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation using the matrix sign function. Both methods yield considerable speed-up compared with the SVD or the Newton-Schulz iteration. Experimental results on the de-correlated batch normalization and second-order vision transformer demonstrate that our methods can also achieve competitive and even slightly better performances. The code is available at \href{https://github.com/KingJamesSong/FastDifferentiableMatSqrt}{https://github.com/KingJamesSong/FastDifferentiableMatSqrt}.

Large-scale pre-training has proven to be effective for visual representation learning on downstream tasks, especially for improving robustness and generalization. However, the recently developed detection transformers only employ pre-training on its backbone while leaving the key component, i.e., a 12-layer transformer, being trained from scratch, which prevents the model from above benefits. This separated training paradigm is mainly caused by the discrepancy between the upstream and downstream tasks. To mitigate the issue, we propose FP-DETR, a new method that Fully Pre-Trains an encoder-only transformer and smoothly fine-tunes it for object detection via a task adapter. Inspired by the success of textual prompts in NLP, we treat query positional embeddings as visual prompts to help the model attend to the target area (prompting) and recognize the object. To this end, we propose the task adapter which leverages self-attention to model the contextual relation between object query embedding. Experiments on the challenging COCO dataset demonstrate that our FP-DETR achieves competitive performance. Moreover, it enjoys better robustness to common corruptions and generalization to small-size datasets than state-of-the-art detection transformers. Code will be made publicly available at https://github.com/encounter1997/FP-DETR.


Simulation-based inference (SBI) refers to statistical inference on stochastic models for which we can generate samples, but not compute likelihoods.Like SBI algorithms, generative adversarial networks (GANs) do not require explicit likelihoods. We study the relationship between SBI and GANs, and introduce GATSBI, an adversarial approach to SBI. GATSBI reformulates the variational objective in an adversarial setting to learn implicit posterior distributions. Inference with GATSBI is amortised across observations, works in high-dimensional posterior spaces and supports implicit priors. We evaluate GATSBI on two common SBI benchmark problems and on two high-dimensional simulators. On a model for wave propagation on the surface of a shallow water body, we show that GATSBI can return well-calibrated posterior estimates even in high dimensions. On a model of camera optics, it infers a high-dimensional posterior given an implicit prior, and performs better than astate-of-the-art SBI approach. We also show how GATSBI can be extended to perform sequential posterior estimation to focus on individual observations.Overall, GATSBI opens up opportunities for leveraging advances in GANs to perform Bayesian inference on high-dimensional simulation-based models.

End-to-end (geometric) deep learning has seen first successes in approximating the solution of combinatorial optimization problems. However, generating data in the realm of NP-hard/-complete tasks brings practical and theoretical challenges, resulting in evaluation protocols that are too optimistic. Specifically, most datasets only capture a simpler subproblem and likely suffer from spurious features. We investigate these effects by studying adversarial robustness -a local generalization property- to reveal hard, model-specific instances and spurious features. For this purpose, we derive perturbation models for SAT and TSP. Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound, allowing us to determine the true label of perturbed samples without a solver. Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning. Although such robust solvers exist, we show empirically that the assessed neural solvers do not generalize well w.r.t. small perturbations of the problem instance.

Despite the tremendous empirical success of deep learning models to solve various learning tasks, our theoretical understanding of their generalization ability is very limited. Classical generalization bounds based on tools such as the VC dimension or Rademacher complexity, are so far unsuitable for deep models and it is doubtful that these techniques can yield tight bounds even in the most idealistic settings~\citep{nagarajan2019uniform}. In this work, we instead revisit the concept of leave-one-out (LOO) error to measure the generalization ability of deep models in the so-called kernel regime. While popular in statistics, the LOO error has been largely overlooked in the context of deep learning. By building upon the recently established connection between neural networks and kernel learning, we leverage the closed-form expression for the leave-one-out error, giving us access to an efficient proxy for the test error. We show both theoretically and empirically that the leave-one-out error is capable of capturing various phenomena in generalization theory, such as double descent, random labels or transfer learning.Our work therefore demonstrates that the leave-one-out error provides a tractable way to estimate the generalization ability of deep neural networks in the kernel regime, opening the door to potential, new research directions in the field …

We propose GRAph Neural Diffusion with a source term (GRAND++) for graph deep learning with a limited number of labeled nodes, i.e., low-labeling rate. GRAND++ is a class of continuous-depth graph deep learning architectures whose theoretical underpinning is the diffusion process on graphs with a source term. The source term guarantees two interesting theoretical properties of GRAND++: (i) the representation of graph nodes, under the dynamics of GRAND++, will not converge to a constant vector over all nodes even as the time goes to infinity, which mitigates the over-smoothing issue of graph neural networks and enables graph learning in very deep architectures. (ii) GRAND++ can provide accurate classification even when the model is trained with a very limited number of labeled training data. We experimentally verify the above two advantages on various graph deep learning benchmark tasks, showing a significant improvement over many existing graph neural networks.


Network-valued data are encountered in a wide range of applications, and pose challenges in learning due to their complex structure and absence of vertex correspondence. Typical examples of such problems include classification or grouping of protein structures and social networks. Various methods, ranging from graph kernels to graph neural networks, have been proposed that achieve some success in graph classification problems. However, most methods have limited theoretical justification, and their applicability beyond classification remains unexplored. In this work, we propose methods for clustering multiple graphs, without vertex correspondence, that are inspired by the recent literature on estimating graphons---symmetric functions corresponding to infinite vertex limit of graphs. We propose a novel graph distance based on sorting-and-smoothing graphon estimators. Using the proposed graph distance, we present two clustering algorithms and show that they achieve state-of-the-art results. We prove the statistical consistency of both algorithms under Lipschitz assumptions on the graph degrees. We further study the applicability of the proposed distance for graph two-sample testing problems.


Discrete-continuous hybrid action space is a natural setting in many practical problems, such as robot control and game AI. However, most previous Reinforcement Learning (RL) works only demonstrate the success in controlling with either discrete or continuous action space, while seldom take into account the hybrid action space. One naive way to address hybrid action RL is to convert the hybrid action space into a unified homogeneous action space by discretization or continualization, so that conventional RL algorithms can be applied. However, this ignores the underlying structure of hybrid action space and also induces the scalability issue and additional approximation difficulties, thus leading to degenerated results. In this paper, we propose Hybrid Action Representation (HyAR) to learn a compact and decodable latent representation space for the original hybrid action space. HyAR constructs the latent space and embeds the dependence between discrete action and continuous parameter via an embedding table and conditional Variantional Auto-Encoder (VAE). To further improve the effectiveness, the action representation is trained to be semantically smooth through unsupervised environmental dynamics prediction. Finally, the agent then learns its policy with conventional DRL algorithms in the learned representation space and interacts with the environment by decoding the hybrid action embeddings …

Various regularization methods have been designed to prevent overfitting of machine learning models. Among them, a surprisingly simple yet effective one, called Flooding, is proposed recently, which directly constrains the training loss on average to stay at a given level. However, our further studies uncover that the design of the loss function of Flooding can lead to a discrepancy between its objective and implementation, and cause the instability issue. To resolve these issues, in this paper, we propose a new regularizer, called individual Flood (denoted as iFlood). With instance-level constraints on training loss, iFlood encourages the trained models to better fit the under-fitted instances while suppressing the confidence on over-fitted ones. We theoretically show that the design of iFlood can be intrinsically connected with removing the noise or bias in training data, which makes it suitable for a variety of applications to improve the generalization performances of learned models. We also theoretically link iFlood to some other regularizers by comparing the inductive biases they introduce. Our experimental results on both image classification and language understanding tasks confirm that models learned with iFlood can stably converge to solutions with better generalization ability, and behave consistently at instance-level.


Among a wide range of success of deep learning, convolutional neural networks have been extensively utilized in several tasks such as speech recognition, image processing, and natural language processing, which require inputs with large dimensions.Several studies have investigated function estimation capability of deep learning, but most of them have assumed that the dimensionality of the input is much smaller than the sample size. However, for typical data in applications such as those handled by the convolutional neural networks described above, the dimensionality of inputs is relatively high or even infinite. In this paper, we investigate the approximation and estimation errors of the (dilated) convolutional neural networks when the input is infinite dimensional. Although the approximation and estimation errors of neural networks are affected by the curse of dimensionality in the existing analyses for typical function spaces such as the \Holder and Besov spaces, we show that, by considering anisotropic smoothness, they can alleviate exponential dependency on the dimensionality but they only depend on the smoothness of the target functions. Our theoretical analysis supports the great practical success of convolutional networks. Furthermore, we show that the dilated convolution is advantageous when the smoothness of the target function has a sparse structure.

Deep Reinforcement Learning (RL) is mainly studied in a setting where the training and the testing environments are similar. But in many practical applications, these environments may differ. For instance, in control systems, the robot(s) on which a policy is learned might differ from the robot(s) on which a policy will run. It can be caused by different internal factors (e.g., calibration issues, system attrition, defective modules) or also by external changes (e.g., weather conditions). There is a need to develop RL methods that generalize well to variations of the training conditions. In this article, we consider the simplest yet hard to tackle generalization setting where the test environment is unknown at train time, forcing the agent to adapt to the system's new dynamics. This online adaptation process can be computationally expensive (e.g., fine-tuning) and cannot rely on meta-RL techniques since there is just a single train environment. To do so, we propose an approach where we learn a subspace of policies within the parameter space. This subspace contains an infinite number of policies that are trained to solve the training environment while having different parameter values. As a consequence, two policies in that subspace process information differently and exhibit …

Multimodal VAEs seek to model the joint distribution over heterogeneous data (e.g.\ vision, language), whilst also capturing a shared representation across such modalities. Prior work has typically combined information from the modalities by reconciling idiosyncratic representations directly in the recognition model through explicit products, mixtures, or other such factorisations. Here we introduce a novel alternative, the MEME, that avoids such explicit combinations by repurposing semi-supervised VAEs to combine information between modalities implicitly through mutual supervision. This formulation naturally allows learning from partially-observed data where some modalities can be entirely missing---something that most existing approaches either cannot handle, or do so to a limited extent. We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes on the MNIST-SVHN (image--image) and CUB (image--text) datasets. We also contrast the quality of the representations learnt by mutual supervision against standard approaches and observe interesting trends in its ability to capture relatedness between data.

Methods that combine local and global features have recently shown excellent performance on multiple challenging deep image retrieval benchmarks, but their use of local features raises at least two issues. First, these local features simply boil down to the localized map activations of a neural network, and hence can be extremely redundant. Second, they are typically trained with a global loss that only acts on top of an aggregation of local features; by contrast, testing is based on local feature matching, which creates a discrepancy between training and testing. In this paper, we propose a novel architecture for deep image retrieval, based solely on mid-level features that we call Super-features. These Super-features are constructed by an iterative attention module and constitute an ordered set in which each element focuses on a localized and discriminant image pattern. For training, they require only image labels. A contrastive loss operates directly at the level of Super-features and focuses on those that match across images. A second complementary loss encourages diversity. Experiments on common landmark retrieval benchmarks validate that Super-features substantially outperform state-of-the-art methods when using the same number of features, and only require a significantly smaller memory footprint to match their performance. Code …

For robots operating in the real world, it is desirable to learn reusable abstract behaviours that can effectively be transferred across numerous tasks and scenarios.We propose an approach to learn skills from data using a hierarchical mixture latent variable model.Our method exploits a multi-level hierarchy of both discrete and continuous latent variables, to model a discrete set of abstract high-level behaviours while allowing for variance in how they are executed.We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours, while retaining the flexibility of a continuous latent variable model.The resulting skills can be transferred to new tasks, unseen objects, and from state to vision-based policies, yielding significantly better sample efficiency and asymptotic performance compared to existing skill- and imitation-based methods.We also perform further analysis showing how and when the skills are most beneficial: they encourage directed exploration to cover large regions of the state space relevant to the task, making them most effective in challenging sparse-reward settings.
Efficient exploration is important for reinforcement learners (RL) to achieve high rewards. In multi-agent systems, coordinated exploration and behaviour is critical for agents to jointly achieve optimal outcomes. In this paper, we introduce a new general framework for improving coordination and performance of multi-agent reinforcement learners (MARL). Our framework, named Learnable Intrinsic-Reward Generation Selection algorithm (LIGS) introduces an adaptive learner, Generator that observes the agents and learns to construct intrinsic rewards online that coordinate the agents’ joint exploration and joint behaviour. Using a novel combination of reinforcement learning (RL) and switching controls, LIGS determines the best states to learn to add intrinsic rewards which leads to a highly efficient learning process. LIGS can subdivide complex tasks making them easier to solve and enables systems of RL agents to quickly solve environments with sparse rewards. LIGS can seamlessly adopt existing multi-agent RL algorithms and our theory shows that it ensures convergence to joint policies that deliver higher system performance. We demonstrate the superior performance of the LIGS framework in challenging tasks in Foraging and StarCraft II and show LIGS is capable of tackling tasks previously unsolvable by MARL methods.

In distributed learning, local SGD (also known as federated averaging) and its simple baseline minibatch SGD are widely studied optimization methods. Most existing analyses of these methods assume independent and unbiased gradient estimates obtained via with-replacement sampling. In contrast, we study shuffling-based variants: minibatch and local Random Reshuffling, which draw stochastic gradients without replacement and are thus closer to practice. For smooth functions satisfying the Polyak-Łojasiewicz condition, we obtain convergence bounds (in the large epoch regime) which show that these shuffling-based variants converge faster than their with-replacement counterparts. Moreover, we prove matching lower bounds showing that our convergence analysis is tight. Finally, we propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.


This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations. For example, consider a group of agents navigating: rotating the state globally results in a permutation of the optimal joint policy. Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting, because such approaches rely on the global symmetry in the full state-action spaces, and these can result in correspondences across agents. To encode such symmetries while still allowing distributed execution we propose a factorization that decomposes global symmetries into local transformations. Our proposed factorization allows for distributing the computation that enforces global symmetries over local agents and local interactions. We introduce a multi-agent equivariant policy network based on this factorization. We show empirically on symmetric multi-agent problems that globally symmetric distributable policies improve data efficiency compared to non-equivariant baselines.

Neural Processes (NPs) consider a task as a function realized from a stochastic process and flexibly adapt to unseen tasks through inference on functions. However, naive NPs can model data from only a single stochastic process and are designed to infer each task independently. Since many real-world data represent a set of correlated tasks from multiple sources (e.g., multiple attributes and multi-sensor data), it is beneficial to infer them jointly and exploit the underlying correlation to improve the predictive performance.To this end, we propose Multi-Task Neural Processes (MTNPs), an extension of NPs designed to jointly infer tasks realized from multiple stochastic processes. We build MTNPs in a hierarchical way such that inter-task correlation is considered by conditioning all per-task latent variables on a single global latent variable. In addition, we further design our MTNPs so that they can address multi-task settings with incomplete data (i.e., not all tasks share the same set of input points), which has high practical demands in various applications.Experiments demonstrate that MTNPs can successfully model multiple tasks jointly by discovering and exploiting their correlations in various real-world data such as time series of weather attributes and pixel-aligned visual modalities. We release our code at https://github.com/GitGyun/multitask …

We present NASPY, an end-to-end adversarial framework to extract the networkarchitecture of deep learning models from Neural Architecture Search (NAS). Existing works about model extraction attacks mainly focus on conventional DNN models with very simple operations, or require heavy manual analysis with lots of domain knowledge. In contrast, NASPY introduces seq2seq models to automatically identify novel and complicated operations (e.g., separable convolution,dilated convolution) from hardware side-channel sequences. We design two models (RNN-CTC and transformer), which can achieve only 3.2% and 11.3% error rates for operation prediction. We further present methods to recover the model hyper-parameters and topology from the operation sequence . With these techniques, NASPY is able to extract the complete NAS model architecture with high fidelity and automation, which are rarely analyzed before.

Uncertainty awareness is crucial to develop reliable machine learning models. In this work, we propose the Natural Posterior Network (NatPN) for fast and high-quality uncertainty estimation for any task where the target distribution belongs to the exponential family. Thus, NatPN finds application for both classification and general regression settings. Unlike many previous approaches, NatPN does not require out-of-distribution (OOD) data at training time. Instead, it leverages Normalizing Flows to fit a single density on a learned low-dimensional and task-dependent latent space. For any input sample, NatPN uses the predicted likelihood to perform a Bayesian update over the target distribution. Theoretically, NatPN assigns high uncertainty far away from training data. Empirically, our extensive experiments on calibration and OOD detection show that NatPN delivers highly competitive performance for classification, regression and count prediction tasks.

Neuromorphic neural network processors, in the form of compute-in-memory crossbar arrays of memristors, or in the form of subthreshold analog and mixed-signal ASICs, promise enormous advantages in compute density and energy efficiency for NN-based ML tasks. However, these technologies are prone to computational non-idealities, due to process variation and intrinsic device physics. This degrades the task performance of networks deployed to the processor, by introducing parameter noise into the deployed model. While it is possible to calibrate each device, or train networks individually for each processor, these approaches are expensive and impractical for commercial deployment. Alternative methods are therefore needed to train networks that are inherently robust against parameter variation, as a consequence of network architecture and parameters. We present a new network training algorithm that attacks network parameters during training, and promotes robust performance during inference in the face of random parameter variation. Our approach introduces a loss regularization term that penalizes the susceptibility of a network to weight perturbation. We compare against previous approaches for producing parameter insensitivity such as dropout, weight smoothing and introducing parameter noise during training. We show that our approach produces models that are more robust to random mismatch-induced parameter variation as well as …
The discovery of structure from time series data is a key problem in fields of study working with complex systems. Most identifiability results and learning algorithms assume the underlying dynamics to be discrete in time. Comparatively few, in contrast, explicitly define dependencies in infinitesimal intervals of time, independently of the scale of observation and of the regularity of sampling. In this paper, we consider score-based structure learning for the study of dynamical systems. We prove that for vector fields parameterized in a large class of neural networks, least squares optimization with adaptive regularization schemes consistently recovers directed graphs of local independencies in systems of stochastic differential equations. Using this insight, we propose a score-based learning algorithm based on penalized Neural Ordinary Differential Equations (modelling the mean process) that we show to be applicable to the general setting of irregularly-sampled multivariate time series and to outperform the state of the art across a range of dynamical systems.

Graph neural networks achieve high accuracy in link prediction by jointly leveraging graph topology and node attributes. Topology, however, is represented indirectly; state-of-the-art methods based on subgraph classification label nodes with distance to the target link, so that, although topological information is present, it is tempered by pooling. This makes it challenging to leverage features like loops and motifs associated with network formation mechanisms. We propose a link prediction algorithm based on a new pooling scheme called WalkPool. WalkPool combines the expressivity of topological heuristics with the feature-learning ability of neural networks. It summarizes a putative link by random walk probabilities of adjacent paths. Instead of extracting transition probabilities from the original graph, it computes the transition matrix of a ``predictive'' latent graph by applying attention to learned features; this may be interpreted as feature-sensitive topology fingerprinting. WalkPool can leverage unsupervised node features or be combined with GNNs and trained end-to-end. It outperforms state-of-the-art methods on all common link prediction benchmarks, both homophilic and heterophilic, with and without node attributes. Applying WalkPool to a set of unsupervised GNNs significantly improves prediction accuracy, suggesting that it may be used as a general-purpose graph pooling scheme.

In this work we theoretically contribute to neural network approximation by providing a novel tropical geometrical viewpoint to structured neural network compression. In particular, we show that the approximation error between two neural networks with ReLU activations and one hidden layer depends on the Hausdorff distance of the tropical zonotopes of the networks. This theorem comes as a first step towards a purely geometrical interpretation of neural network approximation. Based on this theoretical contribution, we propose geometrical methods that employ the K-means algorithm to compress the fully connected parts of ReLU activated deep neural networks. We analyze the error bounds of our algorithms theoretically based on our approximation theorem and evaluate them empirically on neural network compression. Our experiments follow a proof-of-concept strategy and indicate that our geometrical tools achieve improved performance over relevant tropical geometry techniques and can be competitive against non-tropical methods.
We study COMP-AMS, a distributed optimization framework based on gradient averaging and adaptive AMSGrad algorithm. Gradient compression with error feedback is applied to reduce the communication cost in the gradient transmission process. Our convergence analysis of COMP-AMS shows that such compressed gradient averaging strategy yields same convergence rate as standard AMSGrad, and also exhibits linear speedup effect w.r.t. the number of local workers. Compared with recently proposed protocols on distributed adaptive methods, COMP-AMS is simple and convenient. Numerical experiments are conducted to justify the theoretical findings, and demonstrate that the proposed method can achieve same test accuracy as full-gradient AMSGrad with substantial communication savings. With its simplicity and efficiency, COMP-AMS can serve as a useful distributed training framework for adaptive methods.

Despite rapid advances in continual learning, a large body of research is devoted to improving performance in the existing setups.While a handful of work do propose new continual learning setups, they still lack practicality in certain aspects.For better practicality, we first propose a novel continual learning setup that is online, task-free, class-incremental, of blurry task boundaries and subject to inference queries at any moment.We additionally propose a new metric to better measure the performance of the continual learning methods subject to inference queries at any moment.To address the challenging setup and evaluation protocol, we propose an effective method that employs a new memory management scheme and novel learning techniques.Our empirical validation demonstrates that the proposed method outperforms prior arts by large margins. Code and data splits are available at https://github.com/naver-ai/i-Blurry.


Model-free reinforcement learning algorithms can compute policy gradients given sampled environment transitions, but require large amounts of data. In contrast, model-based methods can use the learned model to generate new data, but model errors and bias can render learning unstable or suboptimal. In this paper, we present a novel method that combines real-world data and a learned model in order to get the best of both worlds. The core idea is to exploit the real-world data for on-policy predictions and use the learned model only to generalize to different actions. Specifically, we use the data as time-dependent on-policy correction terms on top of a learned model, to retain the ability to generate data without accumulating errors over long prediction horizons. We motivate this method theoretically and show that it counteracts an error term for model-based policy improvement. Experiments on MuJoCo- and PyBullet-benchmarks show that our method can drastically improve existing model-based approaches without introducing additional tuning parameters.

The vulnerability of machine learning models to membership inference attacks has received much attention in recent years. However, existing attacks mostly remain impractical due to having high false positive rates, where non-member samples are often erroneously predicted as members. This type of error makes the predicted membership signal unreliable, especially since most samples are non-members in real world applications. In this work, we argue that membership inference attacks can benefit drastically from difficulty calibration, where an attack's predicted membership score is adjusted to the difficulty of correctly classifying the target sample. We show that difficulty calibration can significantly reduce the false positive rate of a variety of existing attacks without a loss in accuracy.

Multimodal variational autoencoders (VAEs) have shown promise as efficient generative models for weakly-supervised data. Yet, despite their advantage of weak supervision, they exhibit a gap in generative quality compared to unimodal VAEs, which are completely unsupervised. In an attempt to explain this gap, we uncover a fundamental limitation that applies to a large family of mixture-based multimodal VAEs. We prove that the sub-sampling of modalities enforces an undesirable upper bound on the multimodal ELBO and thereby limits the generative quality of the respective models. Empirically, we showcase the generative quality gap on both synthetic and real data and present the tradeoffs between different variants of multimodal VAEs. We find that none of the existing approaches fulfills all desired criteria of an effective multimodal generative model when applied on more complex datasets than those used in previous benchmarks. In summary, we identify, formalize, and validate fundamental limitations of VAE-based approaches for modeling weakly-supervised data and discuss implications for real-world applications.

To determine causal relationships between two variables, approaches based on Functional Causal Models (FCMs) have been proposed by properly restricting model classes; however, the performance is sensitive to the model assumptions, which makes it difficult to use. In this paper, we provide a novel dynamical-system view of FCMs and propose a new framework for identifying causal direction in the bivariate case. We first show the connection between FCMs and optimal transport, and then study optimal transport under the constraints of FCMs. Furthermore, by exploiting the dynamical interpretation of optimal transport under the FCM constraints, we determine the corresponding underlying dynamical process of the static cause-effect pair data. It provides a new dimension for describing static causal discovery tasks while enjoying more freedom for modeling the quantitative causal influences. In particular, we show that Additive Noise Models (ANMs) correspond to volume-preserving pressureless flows. Consequently, based on their velocity field divergence, we introduce a criterion for determining causal direction. With this criterion, we propose a novel optimal transport-based algorithm for ANMs which is robust to the choice of models and extend it to post-nonlinear models. Our method demonstrated state-of-the-art results on both synthetic and causal discovery benchmark datasets.

Offline Reinforcement Learning (RL) aims to learn policies from previously collected datasets without exploring the environment. Directly applying off-policy algorithms to offline RL usually fails due to the extrapolation error caused by the out-of-distribution (OOD) actions. Previous methods tackle such problem by penalizing the Q-values of OOD actions or constraining the trained policy to be close to the behavior policy. Nevertheless, such methods typically prevent the generalization of value functions beyond the offline data and also lack precise characterization of OOD data. In this paper, we propose Pessimistic Bootstrapping for offline RL (PBRL), a purely uncertainty-driven offline algorithm without explicit policy constraints. Specifically, PBRL conducts uncertainty quantification via the disagreement of bootstrapped Q-functions, and performs pessimistic updates by penalizing the value function based on the estimated uncertainty. To tackle the extrapolating error, we further propose a novel OOD sampling method. We show that such OOD sampling and pessimistic bootstrapping yields provable uncertainty quantifier in linear MDPs, thus providing the theoretical underpinning for PBRL. Extensive experiments on D4RL benchmark show that PBRL has better performance compared to the state-of-the-art algorithms.

Cross-entropy loss and focal loss are the most common choices when training deep neural networks for classification problems. Generally speaking, however, a good loss function can take on much more flexible forms, and should be tailored for different tasks and datasets. Motivated by how functions can be approximated via Taylor expansion, we propose a simple framework, named PolyLoss, to view and design loss functions as a linear combination of polynomial functions. Our PolyLoss allows the importance of different polynomial bases to be easily adjusted depending on the targeting tasks and datasets, while naturally subsuming the aforementioned cross-entropy loss and focal loss as special cases. Extensive experimental results show that the optimal choice within the PolyLoss is indeed dependent on the task and dataset. Simply by introducing one extra hyperparameter and adding one line of code, our Poly-1 formulation outperforms the cross-entropy loss and focal loss on 2D image classification, instance segmentation, object detection, and 3D object detection tasks, sometimes by a large margin.

The lottery ticket hypothesis states that a randomly-initialized neural network contains a small subnetwork which, when trained in isolation, can compete with the performance of the original network. Recent theoretical works proved an even stronger version: every sufficiently overparameterized (dense) neural network contains a subnetwork that, even without training, achieves accuracy comparable to that of the trained large network. These works left as an open problem to extend the result to convolutional neural networks (CNNs).In this work we provide such generalization by showing that, with high probability, it is possible to approximate any CNN by pruning a random CNN whose size is larger by a logarithmic factor.

Multitask learning is being increasingly adopted in applications domains like computer vision and reinforcement learning. However, optimally exploiting its advantages remains a major challenge due to the effect of negative transfer. Previous works have tracked down this issue to the disparities in gradient magnitudes and directions across tasks, when optimizing the shared network parameters. While recent work has acknowledged that negative transfer is a two-fold problem, existing approaches fall short as they only focus on either homogenizing the gradient magnitude across tasks; or greedily change the gradient directions, overlooking future conflicts. In this work, we introduce RotoGrad, an algorithm that tackles negative transfer as a whole: it jointly homogenizes gradient magnitudes and directions, while ensuring training convergence. We show that RotoGrad outperforms competing methods in complex problems, including multi-label classification in CelebA and computer vision tasks in the NYUv2 dataset. A Pytorch implementation can be found in https://github.com/adrianjav/rotograd.

Biological spiking neural networks (SNNs) can temporally encode information in their outputs, e.g. in the rank order in which neurons fire, whereas artificial neural networks (ANNs) conventionally do not. As a result, models of SNNs for neuromorphic computing are regarded as potentially more rapid and efficient than ANNs when dealing with temporal input. On the other hand, ANNs are simpler to train, and usually achieve superior performance. Here we show that temporal coding such as rank coding (RC) inspired by SNNs can also be applied to conventional ANNs such as LSTMs, and leads to computational savings and speedups.In our RC for ANNs, we apply backpropagation through time using the standard real-valued activations, but only from a strategically early time step of each sequential input example, decided by a threshold-crossing event. Learning then incorporates naturally also when to produce an output, without other changes to the model or the algorithm. Both the forward and the backward training pass can be significantly shortened by skipping the remaining input sequence after that first event. RC-training also significantly reduces time-to-insight during inference, with a minimal decrease in accuracy. The desired speed-accuracy trade-off is tunable by varying the threshold or a regularization parameter that rewards …

We introduce a new approach for speech pre-training named SPIRAL which works by learning denoising representation of perturbed data in a teacher-student framework. Specifically, given a speech utterance, we first feed the utterance to a teacher network to obtain corresponding representation. Then the same utterance is perturbed and fed to a student network. The student network is trained to output representation resembling that of the teacher. At the same time, the teacher network is updated as moving average of student's weights over training steps. In order to prevent representation collapse, we apply an in-utterance contrastive loss as pre-training objective and impose position randomization on the input to the teacher. SPIRAL achieves competitive or better results compared to state-of-the-art speech pre-training method wav2vec 2.0, with significant reduction of training cost (80% for BASE model, 65% for LARGE model). Furthermore, we address the problem of noise-robustness that is critical to real-world speech applications. We propose multi-condition pre-training by perturbing the student's input with various types of additive noise. We demonstrate that multi-condition pre-trained SPIRAL models are more robust to noisy speech (9.0% - 13.3% relative word error rate reduction on real noisy test data), compared to applying multi-condition training solely in the …

This paper considers few-shot learning under the cross-domain scenario. The cross-domain setting imposes a critical challenge, i.e., using very few (support) samples to generalize the already-learned model to a novel domain. We hold a hypothesis, i.e., if a deep model is capable to fast generalize itself to different domains (using very few samples) during training, it will maintain such domain generalization capacity for testing. It motivates us to propose a novel Domain-Switch Learning (DSL) framework. DSL embeds the cross-domain scenario into the training stage in a ``fast switching'' manner. Specifically, DSL uses a single domain for a training iteration and switches into another domain for the following iteration. During the switching, DSL enforces two constraints: 1) the deep model should not over-fit the domain in the current iteration and 2) the deep model should not forget the already-learned knowledge of other domains. These two constraints jointly promote fast generalization across different domains. Experimental results confirm that the cross-domain generalization capacity can be inherited from the training stage to the testing stage, validating our key hypothesis. Consequentially, DSL significantly improves cross-domain few-shot classification and sets up new state of the art.

The reinforcement learning (RL) problem is rife with sources of non-stationarity that can destabilize or inhibit learning progress.We identify a key mechanism by which this occurs in agents using neural networks as function approximators: \textit{capacity loss}, whereby networks trained to predict a sequence of target values lose their ability to quickly fit new functions over time.We demonstrate that capacity loss occurs in a broad range of RL agents and environments, and is particularly damaging to learning progress in sparse-reward tasks. We then present a simple regularizer, Initial Feature Regularization (InFeR), that mitigates this phenomenon by regressing a subspace of features towards its value at initialization, improving performance over a state-of-the-art model-free algorithm in the Atari 2600 suite. Finally, we study how this regularization affects different notions of capacity and evaluate other mechanisms by which it may improve performance.

Dynamical phenomena, such as recurrent neuronal activity and perpetual motion of the eye, are typically overlooked in models of bottom-up visual perception. Recent experiments suggest that tiny inter-saccadic eye motion ("fixational drift") enhances visual acuity beyond the limit imposed by the density of retinal photoreceptors. Here we hypothesize that such an enhancement is enabled by recurrent neuronal computations in early visual areas. Specifically, we explore a setting involving a low-resolution dynamical sensor that moves with respect to a static scene, with drift-like tiny steps. This setting mimics a dynamical eye viewing objects in perceptually-challenging conditions. The dynamical sensory input is classified by a convolutional neural network with recurrent connectivity added to its lower layers, in analogy to recurrent connectivity in early visual areas. Applying our system to CIFAR-10 and CIFAR-100 datasets down-sampled via 8x8 sensor, we found that (i) classification accuracy, which is drastically reduced by this down-sampling, is mostly restored to its 32x32 baseline level when using a moving sensor and recurrent connectivity, (ii) in this setting, neurons in the early layers exhibit a wide repertoire of selectivity patterns, spanning the spatiotemporal selectivity space, with neurons preferring different combinations of spatial and temporal patterning, and (iii) curved sensor's trajectories …

Monocular 3D object detection is one of the most challenging tasks in 3D scene understanding. Due to the ill-posed nature of monocular imagery, existing monocular 3D detection methods highly rely on training with the manually annotated 3D box labels on the LiDAR point clouds. This annotation process is very laborious and expensive. To dispense with the reliance on 3D box labels, in this paper we explore the weakly supervised monocular 3D detection. Specifically, we first detect 2D boxes on the image. Then, we adopt the generated 2D boxes to select corresponding RoI LiDAR points as the weak supervision. Eventually, we adopt a network to predict 3D boxes which can tightly align with associated RoI LiDAR points. This network is learned by minimizing our newly-proposed 3D alignment loss between the 3D box estimates and the corresponding RoI LiDAR points. We will illustrate the potential challenges of the above learning problem and resolve these challenges by introducing several effective designs into our method. Codes will be available at https://github.com/SPengLiang/WeakM3D.

Combinatorial optimization lies at the core of many real-world problems. Especially since the rise of graph neural networks (GNNs), the deep learning community has been developing solvers that derive solutions to NP-hard problems by learning the problem-specific solution structure. However, reproducing the results of these publications proves to be difficult. We make three contributions. First, we present an open-source benchmark suite for the NP-hard Maximum Independent Set problem, in both its weighted and unweighted variants. The suite offers a unified interface to various state-of-the-art traditional and machine learning-based solvers. Second, using our benchmark suite, we conduct an in-depth analysis of the popular guided tree search algorithm by Li et al. [NeurIPS 2018], testing various configurations on small and large synthetic and real-world graphs. By re-implementing their algorithm with a focus on code quality and extensibility, we show that the graph convolution network used in the tree search does not learn a meaningful representation of the solution structure, and can in fact be replaced by random values. Instead, the tree search relies on algorithmic techniques like graph kernelization to find good solutions. Thus, the results from the original publication are not reproducible. Third, we extend the analysis to compare the tree …

Exploration remains a central challenge for reinforcement learning (RL). Virtually all existing methods share the feature of a monolithic behaviour policy that changes only gradually (at best). In contrast, the exploratory behaviours of animals and humans exhibit a rich diversity, namely including forms of switching between modes. This paper presents an initial study of mode-switching, non-monolithic exploration for RL. We investigate different modes to switch between, at what timescales it makes sense to switch, and what signals make for good switching triggers. We also propose practical algorithmic components that make the switching mechanism adaptive and robust, which enables flexibility without an accompanying hyper-parameter-tuning burden. Finally, we report a promising initial study on Atari, using two-mode exploration and switching at sub-episodic time-scales.

The literature has proposed several methods to finetune pretrained GANs on new datasets, which typically results in higher performance compared to training from scratch, especially in the limited-data regime. However, despite the apparent empirical benefits of GAN pretraining, its inner mechanisms were not analyzed in-depth, and understanding of its role is not entirely clear. Moreover, the essential practical details, e.g., selecting a proper pretrained GAN checkpoint, currently do not have rigorous grounding and are typically determined by trial and error. This work aims to dissect the process of GAN finetuning. First, we show that initializing the GAN training process by a pretrained checkpoint primarily affects the model's coverage rather than the fidelity of individual samples. Second, we explicitly describe how pretrained generators and discriminators contribute to the finetuning process and explain the previous evidence on the importance of pretraining both of them. Finally, as an immediate practical benefit of our analysis, we describe a simple recipe to choose an appropriate GAN checkpoint that is the most suitable for finetuning to a particular target task. Importantly, for most of the target tasks, Imagenet-pretrained GAN, despite having poor visual quality, appears to be an excellent starting point for finetuning, resembling the typical …

After training on large datasets, certain deep neural networks are surprisingly good models of the neural mechanisms of adult primate visual object recognition. Nevertheless, these models are considered poor models of the development of the visual system because they posit millions of sequential, precisely coordinated synaptic updates, each based on a labeled image. While ongoing research is pursuing the use of unsupervised proxies for labels, we here explore a complementary strategy of reducing the required number of supervised synaptic updates to produce an adult-like ventral visual stream (as judged by the match to V1, V2, V4, IT, and behavior). Such models might require less precise machinery and energy expenditure to coordinate these updates and would thus move us closer to viable neuroscientific hypotheses about how the visual system wires itself up. Relative to standard model training on labeled images in ImageNet, we here demonstrate that the total number of supervised weight updates can be substantially reduced using three complementary strategies: First, we find that only 2% of supervised updates (epochs and images) are needed to achieve 80% of the match to adult ventral stream. Specifically, training benefits predictions of higher visual cortex the most whereas early visual cortex predictions only …
Oral 3: Learning from distribution shift Wed 27 Apr 04:00 p.m.


Robustness to distribution shifts is critical for deploying machine learning models in the real world. Despite this necessity, there has been little work in defining the underlying mechanisms that cause these shifts and evaluating the robustness of algorithms across multiple, different distribution shifts. To this end, we introduce a framework that enables fine-grained analysis of various distribution shifts. We provide a holistic analysis of current state-of-the-art methods by evaluating 19 distinct methods grouped into five categories across both synthetic and real-world datasets. Overall, we train more than 85K models. Our experimental framework can be easily extended to include new methods, shifts, and datasets. We find, unlike previous work (Gulrajani & Lopez-Paz, 2021), that progress has been made over a standard ERM baseline; in particular, pretraining and augmentations (learned or heuristic) offer large gains in many cases. However, the best methods are not consistent over different datasets and shifts. We will open source our experimental framework, allowing future work to evaluate new methods over multiple shifts to obtain a more complete picture of a method's effectiveness. Code is available at github.com/deepmind/distributionshiftframework.

Neural networks and other machine learning models compute continuous representations, while humans communicate mostly through discrete symbols. Reconciling these two forms of communication is desirable for generating human-readable interpretations or learning discrete latent variable models, while maintaining end-to-end differentiability. Some existing approaches (such as the Gumbel-Softmax transformation) build continuous relaxations that are discrete approximations in the zero-temperature limit, while others (such as sparsemax transformations and the Hard Concrete distribution) produce discrete/continuous hybrids. In this paper, we build rigorous theoretical foundations for these hybrids, which we call "mixed random variables.'' Our starting point is a new "direct sum'' base measure defined on the face lattice of the probability simplex. From this measure, we introduce new entropy and Kullback-Leibler divergence functions that subsume the discrete and differential cases and have interpretations in terms of code optimality. Our framework suggests two strategies for representing and sampling mixed random variables, an extrinsic ("sample-and-project'’) and an intrinsic one (based on face stratification). We experiment with both approaches on an emergent communication benchmark and on modeling MNIST and Fashion-MNIST data with variational auto-encoders with mixed latent variables.


Neural network quantization is a promising compression technique to reduce memory footprint and save energy consumption, potentially leading to real-time inference. However, there is a performance gap between quantized and full-precision models. To reduce it, existing quantization approaches require high-precision INT32 or full-precision multiplication during inference for scaling or dequantization. This introduces a noticeable cost in terms of memory, speed, and required energy. To tackle these issues, we present F8Net, a novel quantization framework consisting in only fixed-point 8-bit multiplication. To derive our method, we first discuss the advantages of fixed-point multiplication with different formats of fixed-point numbers and study the statistical behavior of the associated fixed-point numbers. Second, based on the statistical and algorithmic analysis, we apply different fixed-point formats for weights and activations of different layers. We introduce a novel algorithm to automatically determine the right format for each layer during training. Third, we analyze a previous quantization algorithm—parameterized clipping activation (PACT)—and reformulate it using fixed-point arithmetic. Finally, we unify the recently proposed method for quantization fine-tuning and our fixed-point approach to show the potential of our method. We verify F8Net on ImageNet for MobileNet V1/V2 and ResNet18/50. Our approach achieves comparable and better performance, when compared not …
Oral 3: Meta-learning and adaptation Wed 27 Apr 04:00 p.m.

Meta-learning empowers artificial intelligence to increase its efficiency by learning how to learn. Unlocking this potential involves overcoming a challenging meta-optimisation problem. We propose an algorithm that tackles this problem by letting the meta-learner teach itself. The algorithm first bootstraps a target from the meta-learner, then optimises the meta-learner by minimising the distance to that target under a chosen (pseudo-)metric. Focusing on meta-learning with gradients, we establish conditions that guarantee performance improvements and show that metric can be used to control meta-optimisation. Meanwhile, the bootstrapping mechanism can extend the effective meta-learning horizon without requiring backpropagation through all updates. We achieve a new state-of-the art for model-free agents on the Atari ALE benchmark and demonstrate that it yields both performance and efficiency gains in multi-task meta-learning. Finally, we explore how bootstrapping opens up new possibilities and find that it can meta-learn efficient exploration in an epsilon-greedy Q-learning agent - without backpropagating through the update rule.

Deep learning has seen a movement away from representing examples with a monolithic hidden state towards a richly structured state. For example, Transformers segment by position, and object-centric architectures decompose images into entities. In all these architectures, interactions between different elements are modeled via pairwise interactions: Transformers make use of self-attention to incorporate information from other positions and object-centric architectures make use of graph neural networks to model interactions among entities. We consider how to improve on pairwise interactions in terms of global coordination and a coherent, integrated representation that can be used for downstream tasks. In cognitive science, a global workspace architecture has been proposed in which functionally specialized components share information through a common, bandwidth-limited communication channel. We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments. The proposed method includes a shared workspace through which communication among different specialist modules takes place but due to limits on the communication bandwidth, specialist modules must compete for access. We show that capacity limitations have a rational basis in that (1) they encourage specialization and compositionality and (2) they facilitate the synchronization of otherwise independent specialists.

Meta-learning enables algorithms to quickly learn a newly encountered task with just a few labeled examples by transferring previously learned knowledge. However, the bottleneck of current meta-learning algorithms is the requirement of a large number of meta-training tasks, which may not be accessible in real-world scenarios. To address the challenge that available tasks may not densely sample the space of tasks, we propose to augment the task set through interpolation. By meta-learning with task interpolation (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels. Under both gradient-based and metric-based meta-learning settings, our theoretical analysis shows MLTI corresponds to a data-adaptive meta-regularization and further improves the generalization. Empirically, in our experiments on eight datasets from diverse domains including image recognition, pose prediction, molecule property prediction, and medical image classification, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.

In this paper, we introduce Target-Aware Weighted Training (TAWT), a weighted training algorithm for cross-task learning based on minimizing a representation-based task distance between the source and target tasks. We show that TAWT is easy to implement, is computationally efficient, requires little hyperparameter tuning, and enjoys non-asymptotic learning-theoretic guarantees. The effectiveness of TAWT is corroborated through extensive experiments with BERT on four sequence tagging tasks in natural language processing (NLP), including part-of-speech (PoS) tagging, chunking, predicate detection, and named entity recognition (NER). As a byproduct, the proposed representation-based task distance allows one to reason in a theoretically principled way about several critical aspects of cross-task learning, such as the choice of the source data and the impact of fine-tuning.

Machine learning models that achieve high overall accuracy often make systematic errors on important subsets (or slices) of data. Identifying underperforming slices is particularly challenging when working with high-dimensional inputs (e.g. images, audio), where important slices are often unlabeled. In order to address this issue, recent studies have proposed automated slice discovery methods (SDMs), which leverage learned model representations to mine input data for slices on which a model performs poorly. To be useful to a practitioner, these methods must identify slices that are both underperforming and coherent (i.e. united by a human-understandable concept). However, no quantitative evaluation framework currently exists for rigorously assessing SDMs with respect to these criteria. Additionally, prior qualitative evaluations have shown that SDMs often identify slices that are incoherent. In this work, we address these challenges by first designing a principled evaluation framework that enables a quantitative comparison of SDMs across 1,235 slice discovery settings in three input domains (natural images, medical images, and time-series data).Then, motivated by the recent development of powerful cross-modal representation learning approaches, we present Domino, an SDM that leverages cross-modal embeddings and a novel error-aware mixture model to discover and describe coherent slices. We find that Domino accurately identifies 36% …

Machine learning systems deployed in the wild are often trained on a source distribution but deployed on a different target distribution. Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well. However, existing distribution shift benchmarks with unlabeled data do not reflect the breadth of scenarios that arise in real-world applications. In this work, we present the WILDS 2.0 update, which extends 8 of the 10 datasets in the WILDS benchmark of distribution shifts to include curated unlabeled data that would be realistically obtainable in deployment. These datasets span a wide range of applications (from histology to wildlife conservation), tasks (classification, regression, and detection), and modalities (photos, satellite images, microscope slides, text, molecular graphs). The update maintains consistency with the original WILDS benchmark by using identical labeled training, validation, and test sets, as well as identical evaluation metrics. We systematically benchmark state-of-the-art methods that use unlabeled data, including domain-invariant, self-training, and self-supervised methods, and show that their success on WILDS is limited. To facilitate method development, we provide an open-source package that automates …
Poster Session 8 Wed 27 Apr 05:30 p.m.
[ Virtual ]

[ Virtual ]

[ Virtual ]

An intuitive way to search for images is to use queries composed of an example image and a complementary text. While the first provides rich and implicit context for the search, the latter explicitly calls for new traits, or specifies how some elements of the example image should be changed to retrieve the desired target image. Current approaches typically combine the features of each of the two elements of the query into a single representation, which can then be compared to the ones of the potential target images. Our work aims at shedding new light on the task by looking at it through the prism of two familiar and related frameworks: text-to-image and image-to-image retrieval. Taking inspiration from them, we exploit the specific relation of each query element with the targeted image and derive light-weight attention mechanisms which enable to mediate between the two complementary modalities. We validate our approach on several retrieval benchmarks, querying with images and their associated free-form text modifiers. Our method obtains state-of-the-art results without resorting to side information, multi-level features, heavy pre-training nor large architectures as in previous works.
[ Virtual ]

We empirically show that the test error of deep networks can be estimated by training the same architecture on the same training set but with two different runs of Stochastic Gradient Descent (SGD), and then measuring the disagreement rate between the two networks on unlabeled test data. This builds on -- and is a stronger version of -- the observation in Nakkiran&Bansal 20, which requires the runs to be on separate training sets. We further theoretically show that this peculiar phenomenon arises from the well-calibrated nature of ensembles of SGD-trained models. This finding not only provides a simple empirical measure to directly predict the test error using unlabeled test data, but also establishes a new conceptual connection between generalization and calibration.
[ Virtual ]

This work targets automated designing and scaling of Vision Transformers (ViTs). The motivation comes from two pain spots: 1) the lack of efficient and principled methods for designing and scaling ViTs; 2) the tremendous computational cost of training ViT that is much heavier than its convolution counterpart. To tackle these issues, we propose As-ViT, an auto-scaling framework for ViTs without training, which automatically discovers and scales up ViTs in an efficient and principled manner. Specifically, we first design a "seed" ViT topology by leveraging a training-free search process. This extremely fast search is fulfilled by a comprehensive study of ViT's network complexity, yielding a strong Kendall-tau correlation with ground-truth accuracies. Second, starting from the "seed" topology, we automate the scaling rule for ViTs by growing widths/depths to different ViT layers. This results in a series of architectures with different numbers of parameters in a single run. Finally, based on the observation that ViTs can tolerate coarse tokenization in early training stages, we propose a progressive tokenization strategy to train ViTs faster and cheaper. As a unified framework, As-ViT achieves strong performance on classification (83.5% top1 on ImageNet-1k) and detection (52.7% mAP on COCO) without any manual crafting nor scaling of …
[ Virtual ]

Standard model-free reinforcement learning algorithms optimize a policy that generates the action to be taken in the current time step in order to maximize expected future return. While flexible, it faces difficulties arising from the inefficient exploration due to its single step nature. In this work, we present Generative Planning method (GPM), which can generate actions not only for the current step, but also for a number of future steps (thus termed as generative planning). This brings several benefits to GPM. Firstly, since GPM is trained by maximizing value, the plans generated from it can be regarded as intentional action sequences for reaching high value regions. GPM can therefore leverage its generated multi-step plans for temporally coordinated exploration towards high value regions, which is potentially more effective than a sequence of actions generated by perturbing each action at single step level, whose consistent movement decays exponentially with the number of exploration steps. Secondly, starting from a crude initial plan generator, GPM can refine it to be adaptive to the task, which, in return, benefits future explorations. This is potentially more effective than commonly used action-repeat strategy, which is non-adaptive in its form of plans. Additionally, since the multi-step plan can …
[ Virtual ]

Existing domain adaptation methods tend to treat every domain equally and align them all perfectly. Such uniform alignment ignores topological structures among different domains; therefore it may be beneficial for nearby domains, but not necessarily for distant domains. In this work, we relax such uniform alignment by using a domain graph to encode domain adjacency, e.g., a graph of states in the US with each state as a domain and each edge indicating adjacency, thereby allowing domains to align flexibly based on the graph structure. We generalize the existing adversarial learning framework with a novel graph discriminator using encoding-conditioned graph embeddings. Theoretical analysis shows that at equilibrium, our method recovers classic domain adaptation when the graph is a clique, and achieves non-trivial alignment for other types of graphs. Empirical results show that our approach successfully generalizes uniform alignment, naturally incorporates domain information represented by graphs, and improves upon existing domain adaptation methods on both synthetic and real-world datasets.
[ Virtual ]

Irregularly sampled time series commonly occur in several domains where they present a significant challenge to standard deep learning models. In this paper, we propose a new deep learning framework for probabilistic interpolation of irregularly sampled time series that we call the Heteroscedastic Temporal Variational Autoencoder (HeTVAE). HeTVAE includes a novel input layer to encode information about input observation sparsity, a temporal VAE architecture to propagate uncertainty due to input sparsity, and a heteroscedastic output layer to enable variable uncertainty in the output interpolations. Our results show that the proposed architecture is better able to reflect variable uncertainty through time due to sparse and irregular sampling than a range of baseline and traditional models, as well as recently proposed deep latent variable models that use homoscedastic output layers.
[ Virtual ]

Graph Attention Networks (GATs) are one of the most popular GNN architectures and are considered as the state-of-the-art architecture for representation learning with graphs. In GAT, every node attends to its neighbors given its own representation as the query.However, in this paper we show that GAT computes a very limited kind of attention: the ranking of the attention scores is unconditioned on the query node. We formally define this restricted kind of attention as static attention and distinguish it from a strictly more expressive dynamic attention.Because GATs use a static attention mechanism, there are simple graph problems that GAT cannot express: in a controlled problem, we show that static attention hinders GAT from even fitting the training data. To remove this limitation, we introduce a simple fix by modifying the order of operations and propose GATv2: a dynamic graph attention variant that is strictly more expressive than GAT. We perform an extensive evaluation and show that GATv2 outperforms GAT across 12 OGB and other benchmarks while we match their parametric costs. Our code is available at https://github.com/tech-srl/howattentiveare_gats . GATv2 is available as part of the PyTorch Geometric library, the Deep Graph Library, and the TensorFlow GNN library.
[ Virtual ]

Diffusion models have emerged as an expressive family of generative models rivaling GANs in sample quality and autoregressive models in likelihood scores. Standard diffusion models typically require hundreds of forward passes through the model to generate a single high-fidelity sample. We introduce Differentiable Diffusion Sampler Search (DDSS): a method that optimizes fast samplers for any pre-trained diffusion model by differentiating through sample quality scores. We also present Generalized Gaussian Diffusion Models (GGDM), a family of flexible non-Markovian samplers for diffusion models. We show that optimizing the degrees of freedom of GGDM samplers by maximizing sample quality scores via gradient descent leads to improved sample quality. Our optimization procedure backpropagates through the sampling process using the reparametrization trick and gradient rematerialization. DDSS achieves strong results on unconditional image generation across various datasets (e.g., FID scores on LSUN church 128x128 of 11.6 with only 10 inference steps, and 4.82 with 20 steps, compared to 51.1 and 14.9 with strongest DDPM/DDIM baselines). Our method is compatible with any pre-trained diffusion model without fine-tuning or re-training required.
[ Virtual ]

[ Virtual ]

[ Virtual ]

Reasoning is a fundamental problem for computers and deeply studied in Artificial Intelligence. In this paper, we specifically focus on answering multi-hop logical queries on Knowledge Graphs (KGs). This is a complicated task because, in real world scenarios, the graphs tend to be large and incomplete. Most previous works have been unable to create models that accept full First-Order Logical (FOL) queries, which includes negative queries, and have only been able to process a limited set of query structures. Additionally, most methods present logic operators that can only perform the logical operation they are made for. We introduce a set of models that use Neural Networks to create one-point vector embeddings to answer the queries. The versatility of neural networks allows the framework to handle FOL queries with Conjunction, Disjunction and Negation operators. We demonstrate experimentally the performance of our models through extensive experimentation on well-known benchmarking datasets. Besides having more versatile operators, the models achieve a 10% relative increase over best performing state of the art and more than 30% over the original method based on single-point vector embeddings.
[ Virtual ]

Recently, large-scale Contrastive Language-Image Pre-training (CLIP) has attracted unprecedented attention for its impressive zero-shot recognition ability and excellent transferability to downstream tasks. However, CLIP is quite data-hungry and requires 400M image-text pairs for pre-training, thereby restricting its adoption. This work proposes a novel training paradigm, Data efficient CLIP (DeCLIP), to alleviate this limitation. We demonstrate that by carefully utilizing the widespread supervision among the image-text pairs, our De-CLIP can learn generic visual features more efficiently. Instead of using the single image-text contrastive supervision, we fully exploit data potential through the use of (1) self-supervision within each modality; (2) multi-view supervision across modalities; (3) nearest-neighbor supervision from other similar pairs. Benefiting from intrinsic supervision, our DeCLIP-ResNet50 can achieve 60.4% zero-shot top1 accuracy on ImageNet, which is 0.8% above the CLIP-ResNet50 while using 7.1×fewer data. Our DeCLIP-ResNet50 outperforms its counterpart in 8 out of 11 visual datasets when transferred to downstream tasks. Moreover, Scaling up the model and computing also works well in our framework.
[ Virtual ]

Unsupervised feature learning often finds low-dimensional embeddings that capture the structure of complex data. For tasks for which prior expert topological knowledge is available, incorporating this into the learned representation may lead to higher quality embeddings. For example, this may help one to embed the data into a given number of clusters, or to accommodate for noise that prevents one from deriving the distribution of the data over the model directly, which can then be learned more effectively. However, a general tool for integrating different prior topological knowledge into embeddings is lacking. Although differentiable topology layers have been recently developed that can (re)shape embeddings into prespecified topological models, they have two important limitations for representation learning, which we address in this paper. First, the currently suggested topological losses fail to represent simple models such as clusters and flares in a natural manner. Second, these losses neglect all original structural (such as neighborhood) information in the data that is useful for learning. We overcome these limitations by introducing a new set of topological losses, and proposing their usage as a way for topologically regularizing data embeddings to naturally represent a prespecified model. We include thorough experiments on synthetic and real data …
[ Virtual ]

Reinforcement learning can train policies that effectively perform complex tasks. However for long-horizon tasks, the performance of these methods degrades with horizon, often necessitating reasoning over and chaining lower-level skills. Hierarchical reinforcement learning aims to enable this by providing a bank of low-level skills as action abstractions. Hierarchies can further improve on this by abstracting the space states as well. We posit that a suitable state abstraction should depend on the capabilities of the available lower-level policies. We propose Value Function Spaces: a simple approach that produces such a representation by using the value functions corresponding to each lower-level skill. These value functions capture the affordances of the scene, thus forming a representation that compactly abstracts task relevant information and robustly ignores distractors. Empirical evaluations for maze-solving and robotic manipulation tasks demonstrate that our approach improves long-horizon performance and enables better zero-shot generalization than alternative model-free and model-based methods.
[ Virtual ]

Variational Autoencoders (VAEs) are one of the most commonly used generative models, particularly for image data. A prominent difficulty in training VAEs is data that is supported on a lower dimensional manifold. Recent work by Dai and Wipf (2020) proposes a two-stage training algorithm for VAEs, based on a conjecture that in standard VAE training the generator will converge to a solution with 0 variance which is correctly supported on the ground truth manifold. They gave partial support for this conjecture by showing that some optima of the VAE loss do satisfy this property, but did not analyze the training dynamics. In this paper, we show that for linear encoders/decoders, the conjecture is true—that is the VAE training does recover a generator with support equal to the ground truth manifold—and does so due to an implicit bias of gradient descent rather than merely the VAE loss itself. In the nonlinear case, we show that VAE training frequently learns a higher-dimensional manifold which is a superset of the ground truth manifold.


We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a unified solution for unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In an extensive experimental study, we compare its behavior with respective state-of-the-art techniques from SSL, SSDA, and UDA and find that AdaMatch either matches or significantly exceeds the state-of-the-art in each case using the same hyper-parameters regardless of the dataset or task. For example, AdaMatch nearly doubles the accuracy compared to that of the prior state-of-the-art on the UDA task for DomainNet and even exceeds the accuracy of the prior state-of-the-art obtained with pre-training by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by providing AdaMatch with just one labeled example per class from the target domain (i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and with 5 labeled examples, by 13.6%.

Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to bioactivity and drug discovery.
Unsupervised detection of anomaly points in time series is a challenging problem, which requires the model to derive a distinguishable criterion. Previous methods tackle the problem mainly through learning pointwise representation or pairwise association, however, neither is sufficient to reason about the intricate dynamics. Recently, Transformers have shown great power in unified modeling of pointwise representation and pairwise association, and we find that the self-attention weight distribution of each time point can embody rich association with the whole series. Our key observation is that due to the rarity of anomalies, it is extremely difficult to build nontrivial associations from abnormal points to the whole series, thereby, the anomalies' associations shall mainly concentrate on their adjacent time points. This adjacent-concentration bias implies an association-based criterion inherently distinguishable between normal and abnormal points, which we highlight through the Association Discrepancy. Technically, we propose the Anomaly Transformer with a new Anomaly-Attention mechanism to compute the association discrepancy. A minimax strategy is devised to amplify the normal-abnormal distinguishability of the association discrepancy. The Anomaly Transformer achieves state-of-the-art results on six unsupervised time series anomaly detection benchmarks of three applications: service monitoring, space & earth exploration, and water treatment.

Federated learning is an established method for training machine learning models without sharing training data. However, recent work has shown that it cannot guarantee data privacy as shared gradients can still leak sensitive information. To formalize the problem of gradient leakage, we propose a theoretical framework that enables, for the first time, analysis of the Bayes optimal adversary phrased as an optimization problem. We demonstrate that existing leakage attacks can be seen as approximations of this optimal adversary with different assumptions on the probability distributions of the input data and gradients. Our experiments confirm the effectiveness of the Bayes optimal adversary when it has knowledge of the underlying distribution. Further, our experimental evaluation shows that several existing heuristic defenses are not effective against stronger attacks, especially early in the training process. Thus, our findings indicate that the construction of more effective defenses and their evaluation remains an open problem.

Better-supervised models might have better performance. In this paper, we first clarify what makes for good supervision for a classification problem, and then explain two existing label refining methods, label smoothing and knowledge distillation, in terms of our proposed criterion. To further answer why and how better supervision emerges, we observe the learning path, i.e., the trajectory of the model's predictions during training, for each training sample. We find that the model can spontaneously refine "bad" labels through a "zig-zag" learning path, which occurs on both toy and real datasets. Observing the learning path not only provides a new perspective for understanding knowledge distillation, overfitting, and learning dynamics, but also reveals that the supervisory signal of a teacher network can be very unstable near the best points in training on real tasks. Inspired by this, we propose a new knowledge distillation scheme, Filter-KD, which improves downstream classification performance in various settings.

Structural locality is a ubiquitous feature of real-world datasets, wherein data points are organized into local hierarchies. Some examples include topical clusters in text or project hierarchies in source code repositories. In this paper, we explore utilizing this structural locality within non-parametric language models, which generate sequences that reference retrieved examples from an external source. We propose a simple yet effective approach for adding locality information into such models by adding learned parameters that improve the likelihood of retrieving examples from local neighborhoods. Experiments on two different domains, Java source code and Wikipedia text, demonstrate that locality features improve model efficacy over models without access to these features, with interesting differences. We also perform an analysis of how and where locality features contribute to improving performance and why the traditionally used contextual similarity metrics alone are not enough to grasp the locality structure.

In real-world systems, models are frequently updated as more data becomes available, and in addition to achieving high accuracy, the goal is to also maintain a low difference in predictions compared to the base model (i.e. predictive churn). If model retraining results in vastly different behavior, then it could cause negative effects in downstream systems, especially if this churn can be avoided with limited impact on model accuracy. In this paper, we show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn. We then show that distillation performs strongly for low churn training against a number of recent baselines on a wide range of datasets and model architectures, including fully-connected networks, convolutional networks, and transformers.

What is the state of the art in continual machine learning? Although a natural question for predominant static benchmarks, the notion to train systems in a lifelong manner entails a plethora of additional challenges with respect to set-up and evaluation. The latter have recently sparked a growing amount of critiques on prominent algorithm-centric perspectives and evaluation protocols being too narrow, resulting in several attempts at constructing guidelines in favor of specific desiderata or arguing against the validity of prevalent assumptions. In this work, we depart from this mindset and argue that the goal of a precise formulation of desiderata is an ill-posed one, as diverse applications may always warrant distinct scenarios. Instead, we introduce the Continual Learning EValuation Assessment Compass: the CLEVA-Compass. The compass provides the visual means to both identify how approaches are practically reported and how works can simultaneously be contextualized in the broader literature landscape. In addition to promoting compact specification in the spirit of recent replication trends, it thus provides an intuitive chart to understand the priorities of individual systems, where they resemble each other, and what elements are missing towards a fair comparison.

Measuring the discrepancy between two probability distributions is a fundamental problem in machine learning and statistics. We propose a new class of discrepancies based on the optimal loss for a decision task -- two distributions are different if the optimal decision loss is higher on their mixture than on each individual distribution. By suitably choosing the decision task, this generalizes the Jensen-Shannon divergence and the maximum mean discrepancy family. We apply our approach to two-sample tests, and on various benchmarks, we achieve superior test power compared to competing methods. In addition, a modeler can directly specify their preferences when comparing distributions through the decision loss. We apply this property to understanding the effects of climate change on different social and economic activities, evaluating sample quality, and selecting features targeting different decision tasks.

We develop a new continual meta-learning method to address challenges in sequential multi-task learning. In this setting, the agent's goal is to achieve high reward over any sequence of tasks quickly. Prior meta-reinforcement learning algorithms have demonstrated promising results in accelerating the acquisition of new tasks. However, they require access to all tasks during training. Beyond simply transferring past experience to new tasks, our goal is to devise continual reinforcement learning algorithms that learn to learn, using their experience on previous tasks to learn new tasks more quickly. We introduce a new method, continual meta-policy search (CoMPS), that removes this limitation by meta-training in an incremental fashion, over each task in a sequence, without revisiting prior tasks. CoMPS continuously repeats two subroutines: learning a new task using RL and using the experience from RL to perform completely offline meta-learning to prepare for subsequent task learning. We find that CoMPS outperforms prior continual learning and off-policy meta-reinforcement methods on several sequences of challenging continuous control tasks.

The availability of both anatomical connectivity and brain-wide neural activity measurements in C. elegans make the worm a promising system for learning detailed, mechanistic models of an entire nervous system in a data-driven way. However, one faces several challenges when constructing such a model. We often do not have direct experimental access to important modeling details such as single-neuron dynamics and the signs and strengths of the synaptic connectivity. Further, neural activity can only be measured in a subset of neurons, often indirectly via calcium imaging, and significant trial-to-trial variability has been observed. To address these challenges, we introduce a connectome-constrained latent variable model (CC-LVM) of the unobserved voltage dynamics of the entire C. elegans nervous system and the observed calcium signals. We used the framework of variational autoencoders to fit parameters of the mechanistic simulation constituting the generative model of the LVM to calcium imaging observations. A variational approximate posterior distribution over latent voltage traces for all neurons is efficiently inferred using an inference network, and constrained by a prior distribution given by the biophysical simulation of neural dynamics. We applied this model to an experimental whole-brain dataset, and found that connectomic constraints enable our LVM to predict the …

Counterfactual examples are one of the most commonly-cited methods for explaining the predictions of machine learning models in key areas such as finance and medical diagnosis. Counterfactuals are often discussed under the assumption that the model on which they will be used is static, but in deployment models may be periodically retrained or fine-tuned. This paper studies the consistency of model prediction on counterfactual examples in deep networks under small changes to initial training conditions, such as weight initialization and leave-one-out variations in data, as often occurs during model deployment. We demonstrate experimentally that counterfactual examples for deep models are often inconsistent across such small changes, and that increasing the cost of the counterfactual, a stability-enhancing mitigation suggested by prior work in the context of simpler models, is not a reliable heuristic in deep networks. Rather, our analysis shows that a model's Lipschitz continuity around the counterfactual, along with confidence of its prediction, is key to its consistency across related models. To this end, we propose Stable Neighbor Search as a way to generate more consistent counterfactual explanations, and illustrate the effectiveness of this approach on several benchmark datasets.

We study the problem of learning a good set of policies, so that when combined together, they can solve a wide variety of unseen reinforcement learning tasks with no or very little new data. Specifically, we consider the framework of generalized policy evaluation and improvement, in which the rewards for all tasks of interest are assumed to be expressible as a linear combination of a fixed set of features. We show theoretically that, under certain assumptions, having access to a specific set of diverse policies, which we call a set of independent policies, can allow for instantaneously achieving high-level performance on all possible downstream tasks which are typically more complex than the ones on which the agent was trained. Based on this theoretical analysis, we propose a simple algorithm that iteratively constructs this set of policies. In addition to empirically validating our theoretical results, we compare our approach with recently proposed diverse policy set construction methods and show that, while others fail, our approach is able to build a behavior basis that enables instantaneous transfer to all possible downstream tasks. We also show empirically that having access to a set of independent policies can better bootstrap the learning process on …

Differentiable physics has recently been shown as a powerful tool for solving soft-body manipulation tasks. However, the differentiable physics solver often gets stuck when the initial contact points of the end effectors are sub-optimal or when performing multi-stage tasks that require contact point switching, which often leads to local minima.To address this challenge, we propose a contact point discovery approach (CPDeform) that guides the stand-alone differentiable physics solver to deform various soft-body plasticines. The key idea of our approach is to integrate optimal transport-based contact points discovery into the differentiable physics solver to overcome the local minima from initial contact points or contact switching.On single-stage tasks, our method can automatically find suitable initial contact points based on transport priorities. On complex multi-stage tasks, we can iteratively switch the contact points of end-effectors based on transport priorities. To evaluate the effectiveness of our method, we introduce PlasticineLab-M that extends the existing differentiable physics benchmark PlasticineLab to seven new challenging multi-stage soft-body manipulation tasks. Extensive experimental results suggest that: 1) on multi-stage tasks that are infeasible for the vanilla differentiable physics solver, our approach discovers contact points that efficiently guide the solver to completion; 2) on tasks where the vanilla solver performs …

Cross-domain imitation learning studies how to leverage expert demonstrations of one agent to train an imitation agent with a different embodiment or morphology. Comparing trajectories and stationary distributions between the expert and imitation agents is challenging because they live on different systems that may not even have the same dimensionality. We propose Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain imitation that uses the Gromov-Wasserstein distance to align and compare states between the different spaces of the agents. Our theory formally characterizes the scenarios where GWIL preserves optimality, revealing its possibilities and limitations. We demonstrate the effectiveness of GWIL in non-trivial continuous control domains ranging from simple rigid transformation of the expert domain to arbitrary transformation of the state-action space.

Single domain generalization (SDG) is a challenging scenario of domain generalization, where only one source domain is available to train the model. Typical SDG methods are based on the adversarial data augmentation strategy, which complements the diversity of source domain to learn a robust model. Existing SDG methods require the source and target domains to have the same label space. However, as target domains may contain novel categories unseen in source label space, this assumption is not practical in many real-world applications. In this paper, we propose a challenging and untouched problem: \textit{Open-Set Single Domain Generalization} (OS-SDG), where target domains include unseen categories out of source label space. The goal of OS-SDG is to learn a model, with only one source domain, to classify a target sample with correct class if it belongs to source label space, or assign it to unknown classes. We design a \textit{CrossMatch} approach to improve the performance of SDG methods on identifying unknown classes by leveraging a multi-binary classifier. CrossMatch generates auxiliary samples out of source label space by using an adversarial data augmentation strategy. We also adopt a consistency regularization on generated auxiliary samples between multi-binary classifiers and the model trained by SDG methods, …

Crowdsourcing has been instrumental for driving AI advances that rely on large-scale data. At the same time, reinforcement learning has seen rapid progress through benchmark environments that strike a balance between tractability and real-world complexity, such as ALE and OpenAI Gym. In this paper, we aim to fill a gap at the intersection of these two: The use of crowdsourcing to generate large-scale human demonstration data in the support of advancing research into imitation learning and offline learning.To this end, we present CrowdPlay, a complete crowdsourcing pipeline for any standard RL environment including OpenAI Gym (made available under an open-source license); a large-scale publicly available crowdsourced dataset of human gameplay demonstrations in Atari 2600 games, including multimodal behavior and human-human and human-AI multiagent data; offline learning benchmarks with extensive human data evaluation; and a detailed study of incentives, including real-time feedback to drive high quality data.We hope that this will drive the improvement in design of algorithms that account for the complexity of human, behavioral data and thereby enable a step forward in direction of effective learning for real-world settings. Our code and dataset are available at https://mgerstgrasser.github.io/crowdplay/.

Offline reinforcement learning algorithms promise to be applicable in settings where a fixed dataset is available and no new experience can be acquired. However, such formulation is inevitably offline-data-hungry and, in practice, collecting a large offline dataset for one specific task over one specific environment is also costly and laborious. In this paper, we thus 1) formulate the offline dynamics adaptation by using (source) offline data collected from another dynamics to relax the requirement for the extensive (target) offline data, 2) characterize the dynamics shift problem in which prior offline methods do not scale well, and 3) derive a simple dynamics-aware reward augmentation (DARA) framework from both model-free and model-based offline settings. Specifically, DARA emphasizes learning from those source transition pairs that are adaptive for the target environment and mitigates the offline dynamics shift by characterizing state-action-next-state pairs instead of the typical state-action distribution sketched by prior offline RL methods. The experimental evaluation demonstrates that DARA, by augmenting rewards in the source offline dataset, can acquire an adaptive policy for the target environment and yet significantly reduce the requirement of target offline data. With only modest amounts of target offline data, our performance consistently outperforms the prior offline RL methods …

Data poisoning has been proposed as a compelling defense against facial recognition models trained on Web-scraped pictures. Users can perturb images they post online, so that models will misclassify future (unperturbed) pictures. We demonstrate that this strategy provides a false sense of security, as it ignores an inherent asymmetry between the parties: users' pictures are perturbed once and for all before being published (at which point they are scraped) and must thereafter fool all future models---including models trained adaptively against the users' past attacks, or models that use new technologies discovered after the attack. We evaluate two systems for poisoning attacks against large-scale facial recognition, Fawkes (500,000+ downloads) and LowKey. We demonstrate how an "oblivious" model trainer can simply wait for future developments in computer vision to nullify the protection of pictures collected in the past. We further show that an adversary with black-box access to the attack can (i) train a robust model that resists the perturbations of collected pictures and (ii) detect poisoned pictures uploaded online. We caution that facial recognition poisoning will not admit an "arms race" between attackers and defenders. Once perturbed pictures are scraped, the attack cannot be changed so any future successful defense irrevocably …


Training very deep neural networks is still an extremely challenging task. The common solution is to use shortcut connections and normalization layers, which are both crucial ingredients in the popular ResNet architecture. However, there is strong evidence to suggest that ResNets behave more like ensembles of shallower networks than truly deep ones. Recently, it was shown that deep vanilla networks (i.e.~networks without normalization layers or shortcut connections) can be trained as fast as ResNets by applying certain transformations to their activation functions. However, this method (called Deep Kernel Shaping) isn't fully compatible with ReLUs, and produces networks that overfit significantly more than ResNets on ImageNet. In this work, we rectify this situation by developing a new type of transformation that is fully compatible with a variant of ReLUs -- Leaky ReLUs. We show in experiments that our method, which introduces negligible extra computational cost, achieves validation accuracies with deep vanilla networks that are competitive with ResNets (of the same width/depth), and significantly higher than those obtained with the Edge of Chaos (EOC) method. And unlike with EOC, the validation accuracies we obtain do not get worse with depth.

We propose a new differentiable probabilistic model over DAGs (DP-DAG). DP-DAG allows fast and differentiable DAG sampling suited to continuous optimization. To this end, DP-DAG samples a DAG by successively (1) sampling a linear ordering of the node and (2) sampling edges consistent with the sampled linear ordering. We further propose VI-DP-DAG, a new method for DAG learning from observational data which combines DP-DAG with variational inference. Hence,VI-DP-DAG approximates the posterior probability over DAG edges given the observed data. VI-DP-DAG is guaranteed to output a valid DAG at any time during training and does not require any complex augmented Lagrangian optimization scheme in contrast to existing differentiable DAG learning approaches. In our extensive experiments, we compare VI-DP-DAG to other differentiable DAG learning baselines on synthetic and real datasets. VI-DP-DAG significantly improves DAG structure and causal mechanism learning while training faster than competitors.

There have been growing interests in leveraging experimental measurements to discover the underlying partial differential equations (PDEs) that govern complex physical phenomena. Although past research attempts have achieved great success in data-driven PDE discovery, the robustness of the existing methods cannot be guaranteed when dealing with low-quality measurement data. To overcome this challenge, we propose a novel physics-encoded discrete learning framework for discovering spatiotemporal PDEs from scarce and noisy data. The general idea is to (1) firstly introduce a novel deep convolutional-recurrent networks, which can encode prior physics knowledge (e.g., known terms, assumed PDE structure, initial/boundary conditions, etc.) while remaining flexible on representation capability, to accurately reconstruct high-fidelity data, and (2) then perform sparse regression with the reconstructed data to identify the analytical form of the governing PDEs. We validate our proposed framework on three high-dimensional PDE systems. The effectiveness and superiority of the proposed method over baselines are demonstrated.

We present a method to compute the derivative of a learning task with respect to a dataset. A learning task is a function from a training set to the validation error, which can be represented by a trained deep neural network (DNN). The ``dataset derivative'' is a linear operator, computed around the trained model, that informs how perturbations of the weight of each training sample affect the validation error, usually computed on a separate validation dataset. Our method, DIVA (Differentiable Validation) hinges on a closed-form differentiable expression of the leave-one-out cross-validation error around a pre-trained DNN. Such expression constitutes the dataset derivative. DIVA could be used for dataset auto-curation, for example removing samples with faulty annotations, augmenting a dataset with additional relevant samples, or rebalancing. More generally, DIVA can be used to optimize the dataset, along with the parameters of the model, as part of the training process without the need for a separate validation dataset, unlike bi-level optimization methods customary in AutoML. To illustrate the flexibility of DIVA, we report experiments on sample auto-curation tasks such as outlier rejection, dataset extension, and automatic aggregation of multi-modal data.

In every communication round of federated learning, a random subset of clients communicate their model updates back to the server which then aggregates them all. The optimal size of this subset is not known and several studies have shown that typically random selection does not perform very well in terms of convergence, learning efficiency and fairness. We, in this paper, propose to select a small diverse subset of clients, namely those carrying representative gradient information, and we transmit only these updates to the server. Our aim is for updating via only a subset to approximate updating via aggregating all client information. We achieve this by choosing a subset that maximizes a submodular facility location function defined over gradient space. We introduce “federated averaging with diverse client selection (DivFL)”. We provide a thorough analysis of its convergence in the heterogeneous setting and apply it both to synthetic and to real datasets. Empirical results show several benefits to our approach including improved learning efficiency, faster convergence and also more uniform (i.e., fair) performance across clients. We further show a communication-efficient version of DivFL that can still outperform baselines on the above metrics.
Despite overparameterization, deep networks trained via supervised learning are surprisingly easy to optimize and exhibit excellent generalization. One hypothesis to explain this is that overparameterized deep networks enjoy the benefits of implicit regularization induced by stochastic gradient descent, which favors parsimonious solutions that generalize well on test inputs. It is reasonable to surmise that deep reinforcement learning (RL) methods could also benefit from this effect. In this paper, we discuss how the implicit regularization effect of SGD seen in supervised learning could in fact be harmful in the offline deep RL setting, leading to poor generalization and degenerate feature representations. Our theoretical analysis shows that when existing models of implicit regularization are applied to temporal difference learning, the resulting derived regularizer favors degenerate solutions with excessive aliasing, in stark contrast to the supervised learning case. We back up these findings empirically, showing that feature representations learned by a deep network value function trained via bootstrapping can indeed become degenerate, aliasing the representations for state-action pairs that appear on either side of the Bellman backup. To address this issue, we derive the form of this implicit regularizer and, inspired by this derivation, propose a simple and effective explicit regularizer, called DR3, …


Vision transformers have delivered tremendous success in representation learning. This is primarily due to effective token mixing through self attention. However, this scales quadratically with the number of pixels, which becomes infeasible for high-resolution inputs. To cope with this challenge, we propose Adaptive Fourier Neural Operator (AFNO) as an efficient token mixer that learns to mix in the Fourier domain. AFNO is based on a principled foundation of operator learning which allows us to frame token mixing as a continuous global convolution without any dependence on the input resolution. This principle was previously used to design FNO, which solves global convolution efficiently in the Fourier domain and has shown promise in learning challenging PDEs. To handle challenges in visual representation learning such as discontinuities in images and high resolution inputs, we propose principled architectural modifications to FNO which results in memory and computational efficiency. This includes imposing a block-diagonal structure on the channel mixing weights, adaptively sharing weights across tokens, and sparsifying the frequency modes via soft-thresholding and shrinkage. The resulting model is highly parallel with a quasi-linear complexity and has linear memory in the sequence size. AFNO outperforms self-attention mechanisms for few-shot segmentation in terms of both efficiency and …

While recent work has shown that scores from models trained by the ubiquitous masked language modeling (MLM) objective effectively discriminate probable from improbable sequences, it is still an open question if these MLMs specify a principled probability distribution over the space of possible sequences. In this paper, we interpret MLMs as energy-based sequence models and propose two energy parametrizations derivable from the trained MLMs. In order to draw samples correctly from these models, we develop a tractable sampling scheme based on the Metropolis--Hastings Monte Carlo algorithm. In our approach, samples are proposed from the same masked conditionals used for training the masked language models, and they are accepted or rejected based on their energy values according to the target distribution. We validate the effectiveness of the proposed parametrizations by exploring the quality of samples drawn from these energy-based models for both open-ended unconditional generation and a conditional generation task of machine translation. We theoretically and empirically justify our sampling algorithm by showing that the masked conditionals on their own do not yield a Markov chain whose stationary distribution is that of our target distribution, and our approach generates higher quality samples than other recently proposed undirected generation approaches (Wang et …

Despite the recent success of multi-task learning and transfer learning for natural language processing (NLP), few works have systematically studied the effect of scaling up the number of tasks during pre-training. Towards this goal, this paper introduces ExMix (Extreme Mixture): a massive collection of 107 supervised NLP tasks across diverse domains and task-families. Using ExMix, we study the effect of multi-task pre-training at the largest scale to date, and analyze co-training transfer amongst common families of tasks. Through this analysis, we show that manually curating an ideal set of tasks for multi-task pre-training is not straightforward, and that multi-task scaling can vastly improve models on its own. Finally, we propose ExT5: a model pre-trained using a multi-task objective of self-supervised span denoising and supervised ExMix. Via extensive experiments, we show that ExT5 outperforms strong T5 baselines on SuperGLUE, GEM, Rainbow, Closed-Book QA tasks, and several tasks outside of ExMix. ExT5 also significantly improves sample efficiency while pre-training.


Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions using cross/self-attention upon visual and textual tokens. However, cross/self-attention suffers from inferior efficiency in both training and inference. In this paper, we introduce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP) to achieve finer-level alignment through a cross-modal late interaction mechanism, which uses a token-wise maximum similarity between visual and textual tokens to guide the contrastive objective. FILIP successfully leverages the finer-grained expressiveness between image patches and textual words by modifying only contrastive loss, while simultaneously gaining the ability to pre-compute image and text representations offline at inference, keeping both large-scale training and inference efficient. Furthermore, we construct a new large-scale image-text pair dataset called FILIP300M for pre-training. Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks including zero-shot image classification and image-text retrieval. The visualization on word-patch alignment further shows that FILIP can learn meaningful fine-grained features with promising localization ability.

Forgetting is often seen as an unwanted characteristic in both human and machine learning. However, we propose that forgetting can in fact be favorable to learning. We introduce forget-and-relearn as a powerful paradigm for shaping the learning trajectories of artificial neural networks. In this process, the forgetting step selectively removes undesirable information from the model, and the relearning step reinforces features that are consistently useful under different conditions. The forget-and-relearn framework unifies many existing iterative training algorithms in the image classification and language emergence literature, and allows us to understand the success of these algorithms in terms of the disproportionate forgetting of undesirable information. We leverage this understanding to improve upon existing algorithms by designing more targeted forgetting operations. Insights from our analysis provide a coherent view on the dynamics of iterative training in neural networks and offer a clear path towards performance improvements.
The interventional nature of recommendation has attracted increasing attention in recent years. It particularly motivates researchers to formulate learning and evaluating recommendation as causal inference and data missing-not-at-random problems. However, few take seriously the consequence of violating the critical assumption of overlapping, which we prove can significantly threaten the validity and interpretation of the outcome. We find a critical piece missing in the current understanding of information retrieval (IR) systems: as interventions, recommendation not only affects the already observed data, but it also interferes with the target domain (distribution) of interest. We then rephrase optimizing recommendation as finding an intervention that best transports the patterns it learns from the observed domain to its intervention domain. Towards this end, we use domain transportation to characterize the learning-intervention mechanism of recommendation. We design a principled transportation-constraint risk minimization objective and convert it to a two-player minimax game.We prove the consistency, generalization, and excessive risk bounds for the proposed objective, and elaborate how they compare to the current results. Finally, we carry out extensive real-data and semi-synthetic experiments to demonstrate the advantage of our approach, and launch online testing with a real-world IR system.

This paper proposes a novel method for deep learning based on the analytical convolution of multidimensional Gaussian mixtures.In contrast to tensors, these do not suffer from the curse of dimensionality and allow for a compact representation, as data is only stored where details exist.Convolution kernels and data are Gaussian mixtures with unconstrained weights, positions, and covariance matrices.Similar to discrete convolutional networks, each convolution step produces several feature channels, represented by independent Gaussian mixtures.Since traditional transfer functions like ReLUs do not produce Gaussian mixtures, we propose using a fitting of these functions instead.This fitting step also acts as a pooling layer if the number of Gaussian components is reduced appropriately.We demonstrate that networks based on this architecture reach competitive accuracy on Gaussian mixtures fitted to the MNIST and ModelNet data sets.

In vitro cellular experimentation with genetic interventions, using for example CRISPR technologies, is an essential step in early-stage drug discovery and target validation that serves to assess initial hypotheses about causal associations between biological mechanisms and disease pathologies. With billions of potential hypotheses to test, the experimental design space for in vitro genetic experiments is extremely vast, and the available experimental capacity - even at the largest research institutions in the world - pales in relation to the size of this biological hypothesis space. Machine learning methods, such as active and reinforcement learning, could aid in optimally exploring the vast biological space by integrating prior knowledge from various information sources as well as extrapolating to yet unexplored areas of the experimental design space based on available data. However, there exist no standardised benchmarks and data sets for this challenging task and little research has been conducted in this area to date. Here, we introduce GeneDisco, a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery. GeneDisco contains a curated set of multiple publicly available experimental data sets as well as open-source implementations of state-of-the-art active learning policies for experimental design and exploration.

State-of-the-art maximum entropy models for texture synthesis are built from statistics relying on image representations defined by convolutional neural networks (CNN). Such representations capture rich structures in texture images, outperforming wavelet-based representations in this regard. However, conversely to neural networks, wavelets offer meaningful representations, as they are known to detect structures at multiple scales (e.g. edges) in images. In this work, we propose a family of statistics built upon non-linear wavelet based representations, that can be viewed as a particular instance of a one-layer CNN, using a generalized rectifier non-linearity. These statistics significantly improve the visual quality of previous classical wavelet-based models, and allow one to produce syntheses of similar quality to state-of-the-art models, on both gray-scale and color textures.

Graph neural networks (GNNs) have drawn significant research attention recently, mostly under the setting of semi-supervised learning. When task-agnostic representations are preferred or supervision is simply unavailable, the auto-encoder framework comes in handy with a natural graph reconstruction objective for unsupervised GNN training. However, existing graph auto-encoders are designed to reconstruct the direct links, so GNNs trained in this way are only optimized towards proximity-oriented graph mining tasks, and will fall short when the topological structures matter. In this work, we revisit the graph encoding process of GNNs which essentially learns to encode the neighborhood information of each node into an embedding vector, and propose a novel graph decoder to reconstruct the entire neighborhood information regarding both proximity and structure via Neighborhood Wasserstein Reconstruction (NWR). Specifically, from the GNN embedding of each node, NWR jointly predicts its node degree and neighbor feature distribution, where the distribution prediction adopts an optimal-transport loss based on the Wasserstein distance. Extensive experiments on both synthetic and real-world network datasets show that the unsupervised node representations learned with NWR have much more advantageous in structure-oriented graph mining tasks, while also achieving competitive performance in proximity-oriented ones.

Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and for system identification. However, these models are often based on the assumption that the dynamics are fixed and unchanging, which is rarely the case in real-world scenarios. Many control applications often exhibit tasks with similar, but not identical dynamics, that can be modelled as having a common latent structure. We introduce the Hidden Parameter Recurrent State Space Models (HiP-RSSMs), a framework that parametrizes a family of related state-space models with a low-dimensional set of latent factors. We present a simple and effective way of performing learning and inference over this Gaussian graphical model that avoids approximations like variational inference. We show that HiP-RSSMs outperforms RSSMs and competing multi-task models on several challenging robotic benchmarks both on real systems and simulations.
Meta-reinforcement learning (meta-RL) algorithms allow for agents to learn new behaviors from small amounts of experience, mitigating the sample inefficiency problem in RL. However, while meta-RL agents can adapt quickly to new tasks at test time after experiencing only a few trajectories, the meta-training process is still sample-inefficient. Prior works have found that in the multi-task RL setting, relabeling past transitions and thus sharing experience among tasks can improve sample efficiency and asymptotic performance. We apply this idea to the meta-RL setting and devise a new relabeling method called Hindsight Foresight Relabeling (HFR). We construct a relabeling distribution using the combination of "hindsight", which is used to relabel trajectories using reward functions from the training task distribution, and "foresight", which takes the relabeled trajectories and computes the utility of each trajectory for each task. HFR is easy to implement and readily compatible with existing meta-RL algorithms. We find that HFR improves performance when compared to other relabeling methods on a variety of meta-RL tasks.

Randomized least-square value iteration (RLSVI) is a provably efficient exploration method. However, it is limited to the case where (1) a good feature is known in advance and (2) this feature is fixed during the training. If otherwise, RLSVI suffers an unbearable computational burden to obtain the posterior samples. In this work, we present a practical algorithm named HyperDQN to address the above issues under deep RL. In addition to a non-linear neural network (i.e., base model) that predicts Q-values, our method employs a probabilistic hypermodel (i.e., meta model), which outputs the parameter of the base model. When both models are jointly optimized under a specifically designed objective, three purposes can be achieved. First, the hypermodel can generate approximate posterior samples regarding the parameter of the Q-value function. As a result, diverse Q-value functions are sampled to select exploratory action sequences. This retains the punchline of RLSVI for efficient exploration. Second, a good feature is learned to approximate Q-value functions. This addresses limitation (1). Third, the posterior samples of the Q-value function can be obtained in a more efficient way than the existing methods, and the changing feature does not affect the efficiency. This deals with limitation (2). On the …

The success of language Transformers is primarily attributed to the pretext task of masked language modeling (MLM), where texts are first tokenized into semantically meaningful pieces.In this work, we study masked image modeling (MIM) and indicate the necessity and challenges of using a semantically meaningful visual tokenizer.We present a self-supervised framework iBOT that can perform masked prediction with an online tokenizer. Specifically, we perform self-distillation on masked patch tokens and take the teacher network as the online tokenizer, along with self-distillation on the class token to acquire visual semantics.The online tokenizer is jointly learnable with the MIM objective and dispenses with a multi-stage training pipeline where the tokenizer needs to be pre-trained beforehand.We show the prominence of iBOT by achieving an 82.3% linear probing accuracy and an 87.8% fine-tuning accuracy evaluated on ImageNet-1K.Beyond the state-of-the-art image classification results, we underline emerging local semantic patterns, which helps the models to obtain strong robustness against common corruptions and achieve leading results on dense downstream tasks, e.g., object detection, instance segmentation, and semantic segmentation.


Robust subspace recovery (RSR) is the problem of learning a subspace from sample data points corrupted by outliers. Dual Principal Component Pursuit (DPCP) is a robust subspace recovery method that aims to find a basis for the orthogonal complement of the subspace by minimizing the sum of the distances of the points to the subspaces subject to orthogonality constraints on the basis. Prior work has shown that DPCP can provably recover the correct subspace in the presence of outliers as long as the true dimension of the subspace is known. In this paper, we show that if the orthogonality constraints --adopted in previous DPCP formulations-- are relaxed and random initialization is used instead of spectral one, DPCP can provably recover a subspace of \emph{unknown dimension}. Specifically, we propose a very simple algorithm based on running multiple instances of a projected sub-gradient descent method (PSGM), with each problem instance seeking to find one vector in the null space of the subspace. We theoretically prove that under mild conditions this approach succeeds with high probability. In particular, we show that 1) all of the problem instances will converge to a vector in the nullspace of the subspace and 2) the ensemble of …

Model-based reinforcement learning (RL) algorithms designed for handling complex visual observations typically learn some sort of latent state representation, either explicitly or implicitly. Standard methods of this sort do not distinguish between functionally relevant aspects of the state and irrelevant distractors, instead aiming to represent all available information equally. We propose a modified objective for model-based RL that, in combination with mutual information maximization, allows us to learn representations and dynamics for visual model-based RL without reconstruction in a way that explicitly prioritizes functionally relevant factors. The key principle behind our design is to integrate a term inspired by variational empowerment into a state-space learning model based on mutual information. This term prioritizes information that is correlated with action, thus ensuring that functionally relevant factors are captured first. Furthermore, the same empowerment term also promotes faster exploration during the RL process, especially for sparse-reward tasks where the reward signal is insufficient to drive exploration in the early stages of learning. We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds, and show that the proposed prioritized information objective outperforms state-of-the-art model based RL approaches by an average of 20\% in terms of episodic returns …

Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence. they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications.We present Knowledge Infused Decoding (KID)---a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates …


Owing much to the revolution of information technology, recent progress of deep learning benefits incredibly from the vastly enhanced access to data available in various digital formats. Yet those publicly accessible information also raises a fundamental issue concerning Intellectual Property, that is, how to precisely control legal or illegal exploitation of a dataset for training commercial models. To tackle this issue, this paper introduces and investigates a new concept called ''learnability lock'' for securing the process of data authorization. In particular, we propose adversarial invertible transformation, that can be viewed as a mapping from image to image, to encrypt data samples so that they become ''unlearnable'' by machine learning models with negligible loss of visual features. Meanwhile, authorized clients can use a specific key to unlock the learnability of the protected dataset and train models normally. The proposed learnability lock leverages class-wise perturbation that applies a universal transformation function on data samples of the same label. This ensures that the learnability can be easily restored with a simple inverse transformation while remaining difficult to be detected or reverse-engineered. We empirically demonstrate the success and practicability of our method on visual classification tasks.
To train machine learning models that are robust to distribution shifts in the data, distributionally robust optimization (DRO) has been proven very effective. However, the existing approaches to learning a distributionally robust model either require solving complex optimization problems such as semidefinite programming or a first-order method whose convergence scales linearly with the number of data samples-- which hinders their scalability to large datasets. In this paper, we show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods. We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets.

Learning from set-structured data is a fundamental problem that has recently attracted increasing attention, where a series of summary networks are introduced to deal with the set input. In fact, many meta-learning problems can be treated as set-input tasks. Most existing summary networks aim to design different architectures for the input set in order to enforce permutation invariance. However, scant attention has been paid to the common cases where different sets in a meta distribution are closely related and share certain statistical properties. Viewing each set as a distribution over a set of global prototypes, this paper provides a novel prototype-oriented optimal transport (POT) framework to improve existing summary networks. To learn the distribution over the global prototypes, we minimize its regularized optimal transport distance to the set empirical distribution over data points, providing a natural unsupervised way to improve the summary network. Since our plug-and-play framework can be applied to many meta learning problems, we further instantiate it to the cases of few-shot classification and implicit meta generative modeling. Extensive experiments demonstrate that our framework significantly improves the existing summary networks on learning more powerful summary statistics from sets and can be successfully integrated into metric-based few-shot classification and …

In this paper, we study the representation of neural networks from the view of kernels. We first define the Neural Fisher Kernel (NFK), which is the Fisher Kernel applied to neural networks. We show that NFK can be computed for both supervised and unsupervised learning models, which can serve as a unified tool for representation extraction. Furthermore, we show that practical NFKs exhibit low-rank structures. We then propose an efficient algorithm that computes a low-rank approximation of NFK, which scales to large datasets and networks. We show that the low-rank approximation of NFKs derived from unsupervised generative models and supervised learning models gives rise to high-quality compact representations of data, achieving competitive results on a variety of machine learning tasks.

We propose learning via retracing, a novel self-supervised approach for learning the state representation (and the associated dynamics model) for reinforcement learning tasks. In addition to the predictive (reconstruction) supervision in the forward direction, we propose to include "retraced" transitions for representation/model learning, by enforcing the cycle-consistency constraint between the original and retraced states, hence improve upon the sample efficiency of learning. Moreover, learning via retracing explicitly propagates information about future transitions backward for inferring previous states, thus facilitates stronger representation learning for the downstream reinforcement learning tasks. We introduce Cycle-Consistency World Model (CCWM), a concrete model-based instantiation of learning via retracing. Additionally we propose a novel adaptive "truncation" mechanism for counteracting the negative impacts brought by "irreversible" transitions such that learning via retracing can be maximally effective. Through extensive empirical studies on visual-based continuous control benchmarks, we demonstrate that CCWM achieves state-of-the-art performance in terms of sample efficiency and asymptotic performance, whilst exhibiting behaviours that are indicative of stronger representation learning.

We propose a novel method called Long Expressive Memory (LEM) for learning long-term sequential dependencies. LEM is gradient-based, it can efficiently process sequential tasks with very long-term dependencies, and it is sufficiently expressive to be able to learn complicated input-output maps. To derive LEM, we consider a system of multiscale ordinary differential equations, as well as a suitable time-discretization of this system. For LEM, we derive rigorous bounds to show the mitigation of the exploding and vanishing gradients problem, a well-known challenge for gradient-based recurrent sequential learning methods. We also prove that LEM can approximate a large class of dynamical systems to high accuracy. Our empirical results, ranging from image and time-series classification through dynamical systems prediction to speech recognition and language modeling, demonstrate that LEM outperforms state-of-the-art recurrent neural networks, gated recurrent units, and long short-term memory models.


Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. One thus tends to resort to heuristics such as blacking out pixels, which may in turn introduce bias into the debugging process. We study such biases and, in particular, show how transformer-based architectures can enable a more natural implementation of missingness, which side-steps these issues and improves the reliability of model debugging in practice.

As Artificial Intelligence as a Service gains popularity, protecting well-trained models as intellectual property is becoming increasingly important. There are two common types of protection methods: ownership verification and usage authorization. In this paper, we propose Non-Transferable Learning (NTL), a novel approach that captures the exclusive data representation in the learned model and restricts the model generalization ability to certain domains. This approach provides effective solutions to both model verification and authorization. Specifically: 1) For ownership verification, watermarking techniques are commonly used but are often vulnerable to sophisticated watermark removal methods. By comparison, our NTL-based ownership verification provides robust resistance to state-of-the-art watermark removal methods, as shown in extensive experiments with 6 removal approaches over the digits, CIFAR10 & STL10, and VisDA datasets. 2) For usage authorization, prior solutions focus on authorizing specific users to access the model, but authorized users can still apply the model to any data without restriction. Our NTL-based authorization approach instead provides data-centric protection, which we call applicability authorization, by significantly degrading the performance of the model on unauthorized data. Its effectiveness is also shown through experiments on aforementioned datasets.

Despite being able to capture a range of features of the data, high accuracy models trained with supervision tend to make similar predictions. This seemingly implies that high-performing models share similar biases regardless of training methodology, which would limit ensembling benefits and render low-accuracy models as having little practical use. Against this backdrop, recent work has developed quite different training techniques, such as large-scale contrastive learning, yielding competitively high accuracy on generalization and robustness benchmarks. This motivates us to revisit the assumption that models necessarily learn similar functions. We conduct a large-scale empirical study of models across hyper-parameters, architectures, frameworks, and datasets. We find that model pairs that diverge more in training methodology display categorically different generalization behavior, producing increasingly uncorrelated errors. We show these models specialize in subdomains of the data, leading to higher ensemble performance: with just 2 models (each with ImageNet accuracy \~76.5\%), we can create ensembles with 83.4\% (+7\% boost). Surprisingly, we find that even significantly low-accuracy models can be used to improve high-accuracy models. Finally, we show diverging training methodology yield representations that capture overlapping (but not supersetting) feature sets which, when combined, lead to increased downstream performance.

Offline reinforcement learning (RL) shows promise of applying RL to real-world problems by effectively utilizing previously collected data. Most existing offline RL algorithms use regularization or constraints to suppress extrapolation error for actions outside the dataset. In this paper, we adopt a different framework, which learns the V-function instead of the Q-function to naturally keep the learning procedure within the support of an offline dataset. To enable effective generalization while maintaining proper conservatism in offline learning, we propose Expectile V-Learning (EVL), which smoothly interpolates between the optimal value learning and behavior cloning. Further, we introduce implicit planning along offline trajectories to enhance learned V-values and accelerate convergence. Together, we present a new offline method called Value-based Episodic Memory (VEM). We provide theoretical analysis for the convergence properties of our proposed VEM method, and empirical results in the D4RL benchmark show that our method achieves superior performance in most tasks, particularly in sparse-reward tasks.

Vision transformers (ViTs) process input images as sequences of patches via self-attention; a radically different architecture than convolutional neural networks (CNNs). This makes it interesting to study the adversarial feature space of ViT models and their transferability. In particular, we observe that adversarial patterns found via conventional adversarial attacks show very \emph{low} black-box transferability even for large ViT models. We show that this phenomenon is only due to the sub-optimal attack procedures that do not leverage the true representation potential of ViTs. A deep ViT is composed of multiple blocks, with a consistent architecture comprising of self-attention and feed-forward layers, where each block is capable of independently producing a class token. Formulating an attack using only the last class token (conventional approach) does not directly leverage the discriminative information stored in the earlier tokens, leading to poor adversarial transferability of ViTs.Using the compositional nature of ViT models, we enhance transferability of existing attacks by introducing two novel strategies specific to the architecture of ViT models. \emph{(i) Self-Ensemble:} We propose a method to find multiple discriminative pathways by dissecting a single ViT model into an ensemble of networks. This allows explicitly utilizing class-specific information at each ViT block. \emph{(ii) Token Refinement:} …



Populations have often been perceived as a structuring component for language to emerge and evolve: the larger the population, the more systematic the language. While this observation is widespread in the sociolinguistic literature, it has not been reproduced in computer simulations with neural agents. In this paper, we thus aim to clarify this apparent contradiction. We explore emergent language properties by varying agent population size in the speaker-listener Lewis Game. After reproducing the experimental paradox, we challenge the simulation assumption that the agent community is homogeneous. We first investigate how speaker-listener asymmetry alters language structure to examine two potential diversity factors: training speed and network capacity. We find out that emergent language properties are only altered by the relative difference of factors between speaker and listener, and not by their absolute values. From then, we leverage this observation to control population heterogeneity without introducing confounding factors. We finally show that introducing such training speed heterogeneities naturally sort out the initial paradox: larger simulated communities start developing more systematic and structured languages.

We present a general convergent class of reinforcement learning algorithms that is founded on two distinct principles: (1) mapping value estimates to a different space using arbitrary functions from a broad class, and (2) linearly decomposing the reward signal into multiple channels. The first principle enables incorporating specific properties into the value estimator that can enhance learning. The second principle, on the other hand, allows for the value function to be represented as a composition of multiple utility functions. This can be leveraged for various purposes, e.g. dealing with highly varying reward scales, incorporating a priori knowledge about the sources of reward, and ensemble learning. Combining the two principles yields a general blueprint for instantiating convergent algorithms by orchestrating diverse mapping functions over multiple reward channels. This blueprint generalizes and subsumes algorithms such as Q-Learning, Log Q-Learning, and Q-Decomposition. In addition, our convergence proof for this general class relaxes certain required assumptions in some of these algorithms. Based on our theory, we discuss several interesting configurations as special cases. Finally, to illustrate the potential of the design space that our theory opens up, we instantiate a particular algorithm and evaluate its performance on the Atari suite.
Understanding the source of the superior generalization ability of NNs remains one of the most important problems in ML research. There have been a series of theoretical works trying to derive non-vacuous bounds for NNs. Recently, the compression of information stored in weights (IIW) is proved to play a key role in NNs generalization based on the PAC-Bayes theorem. However, no solution of IIW has ever been provided, which builds a barrier for further investigation of the IIW's property and its potential in practical deep learning. In this paper, we propose an algorithm for the efficient approximation of IIW. Then, we build an IIW-based information bottleneck on the trade-off between accuracy and information complexity of NNs, namely PIB. From PIB, we can empirically identify the fitting to compressing phase transition during NNs' training and the concrete connection between the IIW compression and the generalization. Besides, we verify that IIW is able to explain NNs in broad cases, e.g., varying batch sizes, over-parameterization, and noisy labels. Moreover, we propose an MCMC-based algorithm to sample from the optimal weight posterior characterized by PIB, which fulfills the potential of IIW in enhancing NNs in practice.

We study model-based offline Reinforcement Learning with general function approximation without a full coverage assumption on the offline data distribution. We present an algorithm named Constrained Pessimistic Policy Optimization (CPPO) which leverages a general function class and uses a constraint over the models to encode pessimism. Under the assumption that the ground truth model belongs to our function class (i.e., realizability in the function class), CPPO has a PAC guarantee with offline data only providing partial coverage, i.e., it can learn a policy that competes against any policy covered by the offline data. We then demonstrate that this algorithmic framework can be applied to many specialized Markov Decision Processes where the additional structural assumptions can further refine the concept of partial coverage. Two notable examples are: (1) low- rank MDP with representation learning where the partial coverage condition is defined using a relative condition number measured by the unknown ground truth feature representation; (2) factored MDP where the partial coverage condition is defined using density-ratio based concentrability coefficients associated with individual factors.

`Double descent' delineates the generalization behaviour of models depending on the regime they belong to: under- or over-parameterized. The current theoretical understanding behind the occurrence of this phenomenon is primarily based on linear and kernel regression models --- with informal parallels to neural networks via the Neural Tangent Kernel. Therefore such analyses do not adequately capture the mechanisms behind double descent in finite-width neural networks, as well as, disregard crucial components --- such as the choice of the loss function. We address these shortcomings by leveraging influence functions in order to derive suitable expressions of the population loss and its lower bound, while imposing minimal assumptions on the form of the parametric model. Our derived bounds bear an intimate connection with the spectrum of the Hessian at the optimum, and importantly, exhibit a double descent behaviour at the interpolation threshold. Building on our analysis, we further investigate how the loss function affects double descent --- and thus uncover interesting properties of neural networks and their Hessian spectra near the interpolation threshold.

The lottery ticket hypothesis has sparked the rapid development of pruning algorithms that aim to reduce the computational costs associated with deep learning during training and model deployment. Currently, such algorithms are primarily evaluated on imaging data, for which we lack ground truth information and thus the understanding of how sparse lottery tickets could be. To fill this gap, we develop a framework that allows us to plant and hide winning tickets with desirable properties in randomly initialized neural networks. To analyze the ability of state-of-the-art pruning to identify tickets of extreme sparsity, we design and hide such tickets solving four challenging tasks. In extensive experiments, we observe similar trends as in imaging studies, indicating that our framework can provide transferable insights into realistic problems. Additionally, we can now see beyond such relative trends and highlight limitations of current pruning methods. Based on our results, we conclude that the current limitations in ticket sparsity are likely of algorithmic rather than fundamental nature. We anticipate that comparisons to planted tickets will facilitate future developments of efficient pruning algorithms.

Multimodal contrastive learning methods like CLIP train on noisy and uncurated training datasets. This is cheaper than labeling datasets manually, and even improves out-of-distribution robustness. We show that this practice makes backdoor and poisoning attacks a significant threat. By poisoning just 0.01% of a dataset (e.g., just 300 images of the 3 million-example Conceptual Captions dataset), we can cause the model to misclassify test images by overlaying a small patch. Targeted poisoning attacks, whereby the model misclassifies a particular test input with an adversarially-desired label, are even easier requiring control of 0.0001% of the dataset (e.g., just three out of the 3 million images). Our attacks call into question whether training on noisy and uncurated Internet scrapes is desirable.

Conditional Neural Processes (CNPs; Garnelo et al., 2018a) are meta-learning models which leverage the flexibility of deep learning to produce well-calibrated predictions and naturally handle off-the-grid and missing data. CNPs scale to large datasets and train with ease. Due to these features, CNPs appear well-suited to tasks from environmental sciences or healthcare. Unfortunately, CNPs do not produce correlated predictions, making them fundamentally inappropriate for many estimation and decision making tasks. Predicting heat waves or floods, for example, requires modelling dependencies in temperature or precipitation over time and space. Existing approaches which model output dependencies, such as Neural Processes (NPs; Garnelo et al., 2018b) or the FullConvGNP (Bruinsma et al., 2021), are either complicated to train or prohibitively expensive. What is needed is an approach which provides dependent predictions, but is simple to train and computationally tractable. In this work, we present a new class of Neural Process models that make correlated predictions and support exact maximum likelihood training that is simple and scalable. We extend the proposed models by using invertible output transformations, to capture non-Gaussian output distributions. Our models can be used in downstream estimation tasks which require dependent function samples. By accounting for output dependencies, our models show …
Many real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera. Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations and subsequently plan efficiently. However, such approaches can fail in the presence of temporally correlated noise in the observations, a phenomenon that is common in practice. We initiate the formal study of latent state discovery in the presence of such exogenous noise sources by proposing a new model, the Exogenous Block MDP (EX-BMDP), for rich observation RL. We start by establishing several negative results, by highlighting failure cases of prior representation learning based approaches. Then, we introduce the Predictive Path Elimination (PPE) algorithm, that learns a generalization of inverse dynamics and is provably sample and computationally efficient in EX-BMDPs when the endogenous state dynamics are near deterministic. The sample complexity of PPE depends polynomially on the size of the latent endogenous state space while not directly depending on the size of the observation space, nor the exogenous state space. We provide experiments on challenging exploration problems which show that our approach works empirically.

Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce a sample. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a new perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that pseudo linear multi-step method is the best method in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 …

A key assumption in multi-task learning is that at the inference time the multi-task model only has access to a given data point but not to the data point’s labels from other tasks. This presents an opportunity to extend multi-task learning to utilize data point’s labels from other auxiliary tasks, and this way improves performance on the new task. Here we introduce a novel relational multi-task learning setting where we leverage data point labels from auxiliary tasks to make more accurate predictions on the new task. We develop MetaLink, where our key innovation is to build a knowledge graph that connects data points and tasks and thus allows us to leverage labels from auxiliary tasks. The knowledge graph consists of two types of nodes: (1) data nodes, where node features are data embeddings computed by the neural network, and (2) task nodes, with the last layer’s weights for each task as node features. The edges in this knowledge graph capture data-task relationships, and the edge label captures the label of a data point on a particular task. Under MetaLink, we reformulate the new task as a link label prediction problem between a data node and a task node. The MetaLink …

Conveying complex objectives to reinforcement learning (RL) agents often requires meticulous reward engineering. Preference-based RL methods are able to learn a more flexible reward model based on human preferences by actively incorporating human feedback, i.e. teacher's preferences between two clips of behaviors. However, poor feedback-efficiency still remains as a problem in current preference-based RL algorithms, as tailored human feedback is very expensive. To handle this issue, previous methods have mainly focused on improving query selection and policy initialization. At the same time, recent exploration methods have proven to be a recipe for improving sample-efficiency in RL. We present an exploration method specifically for preference-based RL algorithms. Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward. Specifically, we utilize disagreement across ensemble of learned reward models. Our intuition is that disagreement in learned reward model reflects uncertainty in tailored human feedback and could be useful for exploration. Our experiments show that reward uncertainty exploration improves both feedback- and sample-efficiency of preference-based RL algorithms on complex robot manipulation tasks from Meta-World benchmarks, compared with other existing exploration methods that measure the novelty of state visitation.

Recent work has shown that supervised learning alone, without temporal difference (TD) learning, can be remarkably effective for offline RL. When does this hold true, and which algorithmic components are necessary? Through extensive experiments, we boil supervised learning for offline RL down to its essential elements. In every environment suite we consider, simply maximizing likelihood with a two-layer feedforward MLP is competitive with state-of-the-art results of substantially more complex methods based on TD learning or sequence modeling with Transformers. Carefully choosing model capacity (e.g., via regularization or architecture) and choosing which information to condition on (e.g., goals or rewards) are critical for performance. These insights serve as a field guide for practitioners doing Reinforcement Learning via Supervised Learning (which we coin RvS learning). They also probe the limits of existing RvS methods, which are comparatively weak on random data, and suggest a number of open problems.

In model-free deep reinforcement learning (RL) algorithms, using noisy value estimates to supervise policy evaluation and optimization is detrimental to the sample efficiency. As this noise is heteroscedastic, its effects can be mitigated using uncertainty-based weights in the optimization process. Previous methods rely on sampled ensembles, which do not capture all aspects of uncertainty. We provide a systematic analysis of the sources of uncertainty in the noisy supervision that occurs in RL, and introduce inverse-variance RL, a Bayesian framework which combines probabilistic ensembles and Batch Inverse Variance weighting. We propose a method whereby two complementary uncertainty estimation methods account for both the Q-value and the environment stochasticity to better mitigate the negative impacts of noisy supervision. Our results show significant improvement in terms of sample efficiency on discrete and continuous control tasks.

Predicting the motion of multiple agents is necessary for planning in dynamic environments. This task is challenging for autonomous driving since agents (e.g., vehicles and pedestrians) and their associated behaviors may be diverse and influence one another. Most prior work have focused on predicting independent futures for each agent based on all past motion, and planning against these independent predictions. However, planning against independent predictions can make it challenging to represent the future interaction possibilities between different agents, leading to sub-optimal planning. In this work, we formulate a model for predicting the behavior of all agents jointly, producing consistent futures that account for interactions between agents. Inspired by recent language modeling approaches, we use a masking strategy as the query to our model, enabling one to invoke a single model to predict agent behavior in many ways, such as potentially conditioned on the goal or full future trajectory of the autonomous vehicle or the behavior of other agents in the environment. Our model architecture employs attention to combine features across road elements, agent interactions, and time steps. We evaluate our approach on autonomous driving datasets for both marginal and joint motion prediction, and achieve state of the art performance across …

A dynamical system of spiking neurons with only feedforward connections can classify spatiotemporal patterns without recurrent connections. However, the theoretical construct of a feedforward spiking neural network (SNN) for approximating a temporal sequence remains unclear, making it challenging to optimize SNN architectures for learning complex spatiotemporal patterns. In this work, we establish a theoretical framework to understand and improve sequence approximation using a feedforward SNN. Our framework shows that a feedforward SNN with one neuron per layer and skip-layer connections can approximate the mapping function between any arbitrary pairs of input and output spike train on a compact domain. Moreover, we prove that heterogeneous neurons with varying dynamics and skip-layer connections improve sequence approximation using feedforward SNN. Consequently, we propose SNN architectures incorporating the preceding constructs that are trained using supervised backpropagation-through-time (BPTT) and unsupervised spiking-timing-dependent plasticity (STDP) algorithms for classification of spatiotemporal data. A dual-search-space Bayesian optimization method is developed to optimize architecture and parameters of the proposed SNN with heterogeneous neuron dynamics and skip-layer connections.
We introduce space-time graph neural network (ST-GNN), a novel GNN architecture, tailored to jointly process the underlying space-time topology of time-varying network data. The cornerstone of our proposed architecture is the composition of time and graph convolutional filters followed by pointwise nonlinear activation functions. We introduce a generic definition of convolution operators that mimic the diffusion process of signals over its underlying support. On top of this definition, we propose space-time graph convolutions that are built upon a composition of time and graph shift operators. We prove that ST-GNNs with multivariate integral Lipschitz filters are stable to small perturbations in the underlying graphs as well as small perturbations in the time domain caused by time warping. Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs. Numerical experiments with decentralized control systems showcase the effectiveness and stability of the proposed ST-GNNs.

State-of-the-art deep face recognition methods are mostly trained with a softmax-based multi-class classification framework. Despite being popular and effective, these methods still have a few shortcomings that limit empirical performance. In this paper, we start by identifying the discrepancy between training and evaluation in the existing multi-class classification framework and then discuss the potential limitations caused by the "competitive" nature of softmax normalization. Motivated by these limitations, we propose a novel binary classification training framework, termed SphereFace2. In contrast to existing methods, SphereFace2 circumvents the softmax normalization, as well as the corresponding closed-set assumption. This effectively bridges the gap between training and evaluation, enabling the representations to be improved individually by each binary classification task. Besides designing a specific well-performing loss function, we summarize a few general principles for this "one-vs-all" binary classification framework so that it can outperform current competitive methods. Our experiments on popular benchmarks demonstrate that SphereFace2 can consistently outperform state-of-the-art deep face recognition methods.

In this paper we propose a new generative model of text, Step-unrolled Denoising Autoencoder (SUNDAE), that does not rely on autoregressive models. Similarly to denoising diffusion techniques, SUNDAE is repeatedly applied on a sequence of tokens, starting from random inputs and improving them each time until convergence. We present a simple new improvement operator that converges in fewer iterations than diffusion methods, while qualitatively producing better samples on natural language datasets. SUNDAE achieves state-of-the-art results (among non-autoregressive methods) on the WMT'14 English-to-German translation task and good qualitative results on unconditional language modeling on the Colossal Cleaned Common Crawl dataset and a dataset of Python code from GitHub. The non-autoregressive nature of SUNDAE opens up possibilities beyond left-to-right prompted generation, by filling in arbitrary blank patterns in a template.

In this work, we evaluate the effectiveness of representation learning approaches for decision making in visually complex environments. Representation learning is essential for effective reinforcement learning (RL) from high-dimensional in- puts. Unsupervised representation learning approaches based on reconstruction, prediction or contrastive learning have shown substantial learning efficiency gains. Yet, they have mostly been evaluated in clean laboratory or simulated settings. In contrast, real environments are visually complex and contain substantial amounts of clutter and distractors. Unsupervised representations will learn to model such distractors, potentially impairing the agent’s learning efficiency. In contrast, an alternative class of approaches, which we call task-induced representation learning, leverages task information such as rewards or demonstrations from prior tasks to focus on task-relevant parts of the scene and ignore distractors. We investi- gate the effectiveness of unsupervised and task-induced representation learning approaches on four visually complex environments, from Distracting DMControl to the CARLA driving simulator. For both, RL and imitation learning, we find that representation learning generally improves sample efficiency on unseen tasks even in visually complex scenes and that task-induced representations can double learning efficiency compared to unsupervised alternatives.

Models of human behavior for prediction and collaboration tend to fall into two categories: ones that learn from large amounts of data via imitation learning, and ones that assume human behavior to be noisily-optimal for some reward function. The former are very useful, but only when it is possible to gather a lot of human data in the target environment and distribution. The advantage of the latter type, which includes Boltzmann rationality, is the ability to make accurate predictions in new environments without extensive data when humans are actually close to optimal. However, these models fail when humans exhibit systematic suboptimality, i.e. when their deviations from optimal behavior are not independent, but instead consistent over time. Our key insight is that systematic suboptimality can be modeled by predicting policies, which couple action choices over time, instead of trajectories. We introduce the Boltzmann policy distribution (BPD), which serves as a prior over human policies and adapts via Bayesian inference to capture systematic deviations by observing human actions during a single episode. The BPD is difficult to compute and represent because policies lie in a high-dimensional continuous space, but we leverage tools from generative and sequence modeling to enable efficient sampling and …
We study non-convex subgradient flows for training two-layer ReLU neural networks from a convex geometry and duality perspective. We characterize the implicit bias of unregularized non-convex gradient flow as convex regularization of an equivalent convex model. We then show that the limit points of non-convex subgradient flows can be identified via primal-dual correspondence in this convex optimization problem. Moreover, we derive a sufficient condition on the dual variables which ensures that the stationary points of the non-convex objective are the KKT points of the convex objective, thus proving convergence of non-convex gradient flows to the global optimum. For a class of regular training data distributions such as orthogonal separable data, we show that this sufficient condition holds. Therefore, non-convex gradient flows in fact converge to optimal solutions of a convex optimization problem. We present numerical results verifying the predictions of our theory for non-convex subgradient descent.
Training and using modern neural-network based latent-variable generative models (like Variational Autoencoders) often require simultaneously training a generative direction along with an inferential (encoding) direction, which approximates the posterior distribution over the latent variables. Thus, the question arises: how complex does the inferential model need to be, in order to be able to accurately model the posterior distribution of a given generative model? In this paper, we identify an important property of the generative map impacting the required size of the encoder. We show that if the generative map is ``strongly invertible" (in a sense we suitably formalize), the inferential model need not be much more complex. Conversely, we prove that there exist non-invertible generative maps, for which the encoding direction needs to be exponentially larger (under standard assumptions in computational complexity). Importantly, we do not require the generative model to be layerwise invertible, which a lot of the related literature assumes and isn't satisfied by many architectures used in practice (e.g. convolution and pooling based networks). Thus, we provide theoretical support for the empirical wisdom that learning deep generative models is harder when data lies on a low-dimensional manifold.

Model efficiency is a critical aspect of developing and deploying machine learning models. Inference time and latency directly affect the user experience, and some applications have hard requirements. In addition to inference costs, model training also have direct financial and environmental impacts.Although there are numerous well-established metrics (cost indicators) for measuring model efficiency, researchers and practitioners often assume that these metrics are correlated with each other and report only a few of them.In this paper, we thoroughly discuss common cost indicators, their advantages and disadvantages, and how they can contradict each other.We demonstrate how incomplete reporting of cost indicators can lead to partial conclusions and a blurred or incomplete picture of the practical considerations of different models. We further present suggestions to improve reporting of efficiency metrics.
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints. Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces. Given the set of solutions of our convex optimization program, we show how to construct exactly the entire set of optimal neural networks. We provide a detailed characterization of this optimal set and its invariant transformations. As additional consequences of our convex perspective, (i) we establish that Clarke stationary points found by stochastic gradient descent correspond to the global optimum of a subsampled convex problem (ii) we provide a polynomial-time algorithm for checking if a neural network is a global minimum of the training loss (iii) we provide an explicit construction of a continuous path between any neural network and the global minimum of its sublevel set and (iv) characterize the minimal size of the hidden layer so that the neural network optimization landscape has no spurious valleys.Overall, we provide a rich framework for studying the landscape of neural network training loss through convexity.

How can a reinforcement learning (RL) agent prepare to solve downstream tasks if those tasks are not known a priori? One approach is unsupervised skill discovery, a class of algorithms that learn a set of policies without access to a reward function. Such algorithms bear a close resemblance to representation learning algorithms (e.g., contrastive learning) in supervised learning, in that both are pretraining algorithms that maximize some approximation to a mutual information objective. While prior work has shown that the set of skills learned by such methods can accelerate downstream RL tasks, prior work offers little analysis into whether these skill learning algorithms are optimal, or even what notion of optimality would be appropriate to apply to them. In this work, we show that unsupervised skill discovery algorithms based on mutual information maximization do not learn skills that are optimal for every possible reward function. However, we show that the distribution over skills provides an optimal initialization minimizing regret against adversarially-chosen reward functions, assuming a certain type of adaptation procedure. Our analysis also provides a geometric perspective on these skill learning methods.

Disentangled representation learning is one of the major goals of deep learning, and is a key step for achieving explainable and generalizable models. The key idea of the state-of-the-art VAE-based unsupervised representation disentanglement methods is to minimize the total correlation of the joint distribution of the latent variables. However, it has been proved that their goal can not be achieved without introducing other inductive biases. The Group Theory based definition of representation disentanglement mathematically connects the data transformations to the representations using the formalism of group. In this paper, built on the group-based definition and inspired by the \emph{n-th dihedral group}, we first propose a theoretical framework towards achieving unsupervised representation disentanglement. We then propose a model based on existing VAE-based methods to tackle the unsupervised learning problem of the framework. In the theoretical framework, we prove three sufficient conditions on model, group structure, and data respectively in an effort to achieve, in an unsupervised way, disentangled representation per group-based definition. With these conditions, we offer an option, from the perspective of the group-based definition, for the inductive bias that existing VAE-based models lack. Experimentally, we train 1800 models covering the most prominent VAE-based methods on five datasets to verify …

Characterizing and assessing the adversarial vulnerability of classification models with categorical input has been a practically important, while rarely explored research problem. Our work echoes the challenge by first unveiling the impact factors of adversarial vulnerability of classification models with categorical data based on an information-theoretic adversarial risk analysis about the targeted classifier. Though certifying the robustness of such classification models is intrinsically an NP-hard combinatorial problem, our study shows that the robustness certification can be solved via an efficient greedy exploration of the discrete attack space for any measurable classifiers with a mild smoothness constraint. Our proposed robustness certification framework is instantiated with deep neural network models applied on real-world safety-critic data sources. Our empirical observations confirm the impact of the key adversarial risk factors with categorical input.

The theory of function approximation in reinforcement learning (RL) typically considers low capacity representations that incur a tradeoff between approximation error, stability and generalization. Current deep architectures, however, operate in an overparameterized regime where approximation error is not necessarily a bottleneck. To better understand the utility of deep models in RL we present an analysis of recursive value estimation using \emph{overparameterized} linear representations that provides useful, transferable findings. First, we show that classical updates such as temporal difference (TD) learning or fitted-value-iteration (FVI) converge to \emph{different} fixed points than residual minimization (RM) in the overparameterized linear case. We then develop a unified interpretation of overparameterized linear value estimation as minimizing the Euclidean norm of the weights subject to alternative constraints. A practical consequence is that RM can be modified by a simple alteration of the backup targets to obtain the same fixed points as FVI and TD (when they converge), while universally ensuring stability. Further, we provide an analysis of the generalization error of these methods, demonstrating per iterate bounds on the value prediction error of FVI, and fixed point bounds for TD and RM. Given this understanding, we then develop new algorithmic tools for improving recursive value estimation with …


Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies, yet unavoidable modeling errors often lead performance deterioration. The model in MBRL is often solely fitted to reconstruct dynamics, state observations in particular, while the impact of model error on the policy is not captured by the training objective. This leads to a mismatch between the intended goal of MBRL, enabling good policy and value learning, and the target of the loss function employed in practice, future state prediction. Naive intuition would suggest that value-aware model learning would fix this problem and, indeed, several solutions to this objective mismatch problem have been proposed based on theoretical analysis. However, they tend to be inferior in practice to commonly used maximum likelihood (MLE) based approaches. In this paper we propose the Value-gradient weighted Model Learning (VaGraM), a novel method for value-aware model learning which improves the performance of MBRL in challenging settings, such as small model capacity and the presence of distracting state dimensions. We analyze both MLE and value-aware approaches and demonstrate how they fail to account for exploration and the behavior of function approximation when learning value-aware models and highlight the additional goals that must be met …
Social: ICLR selected paper discussion with Data Skeptic & PyData Wed 27 Apr 07:00 p.m.
ICLR selected paper discussion with Data Skeptic & PyData