Skip to yearly menu bar Skip to main content


Poster

Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data

Antonis Antoniades · Yiyi Yu · Joe Canzano · William Wang · Spencer Smith

Halle B #68
[ ] [ Project Page ]
Fri 10 May 1:45 a.m. PDT — 3:45 a.m. PDT

Abstract:

State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis. Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an auto-regressive spatiotemporal generation problem. Neuroformer is a multimodal, multitask generative pre-trained transformer (GPT) model that is specifically designed to handle the intricacies of data in systems neuroscience. It scales linearly with feature size, can process an arbitrary number of modalities, and is adaptable to downstream tasks, such as predicting behavior. We first trained Neuroformer on simulated datasets, and found that it both accurately predicted simulated neuronal circuit activity, and also intrinsically inferred the underlying neural circuit connectivity, including direction. When pretrained to decode neural responses, the model predicted the behavior of a mouse with only few-shot fine-tuning, suggesting that the model begins learning how to do so directly from the neural representations themselves, without any explicit supervision. We used an ablation study to show that joint training on neuronal responses and behavior boosted performance, highlighting the model's ability to associate behavioral and neural representations in an unsupervised manner. These findings show that Neuroformer can analyze neural datasets and their emergent properties, informing the development of models and hypotheses associated with the brain.

Live content is unavailable. Log in and register to view live content