Skip to yearly menu bar Skip to main content


Poster

CAMBranch: Contrastive Learning with Augmented MILPs for Branching

Jiacheng Lin · Meng XU · Zhihua Xiong · Huangang Wang

Halle B #305
[ ]
Wed 8 May 1:45 a.m. PDT — 3:45 a.m. PDT

Abstract:

Recent advancements have introduced machine learning frameworks to enhance the Branch and Bound (B\&B) branching policies for solving Mixed Integer Linear Programming (MILP). These methods, primarily relying on imitation learning of Strong Branching, have shown superior performance. However, collecting expert samples for imitation learning, particularly for Strong Branching, is a time-consuming endeavor. To address this challenge, we propose \textbf{C}ontrastive Learning with \textbf{A}ugmented \textbf{M}ILPs for \textbf{Branch}ing (CAMBranch), a framework that generates Augmented MILPs (AMILPs) by applying variable shifting to limited expert data from their original MILPs. This approach enables the acquisition of a considerable number of labeled expert samples. CAMBranch leverages both MILPs and AMILPs for imitation learning and employs contrastive learning to enhance the model's ability to capture MILP features, thereby improving the quality of branching decisions. Experimental results demonstrate that CAMBranch, trained with only 10\% of the complete dataset, exhibits superior performance. Ablation studies further validate the effectiveness of our method.

Live content is unavailable. Log in and register to view live content