Skip to yearly menu bar Skip to main content


Poster

Hybrid Internal Model: Learning Agile Legged Locomotion with Simulated Robot Response

Junfeng Long · ZiRui Wang · Quanyi Li · Liu Cao · Jiawei Gao · Jiangmiao Pang

Halle B #32
[ ] [ Project Page ]
Thu 9 May 1:45 a.m. PDT — 3:45 a.m. PDT

Abstract:

Robust locomotion control depends on accurate state estimations. However, the sensors of most legged robots can only provide partial and noisy observations, making the estimation particularly challenging, especially for external states like terrain frictions and elevation maps. Inspired by the classical Internal Model Control principle, we consider these external states as disturbances and introduce Hybrid Internal Model (HIM) to estimate them according to the response of the robot. The response, which we refer to as the hybrid internal embedding, contains the robot’s explicit velocity and implicit stability representation, corresponding to two primary goals for locomotion tasks: explicitly tracking velocity and implicitly maintaining stability. We use contrastive learning to optimize the embedding to be close to the robot’s successor state, in which the response is naturally embedded. HIM has several appealing benefits: It only needs the robot’s proprioceptions, i.e., those from joint encoders and IMU as observations. It innovatively maintains consistent observations between simulation reference and reality that avoids information loss in mimicking learning. It exploits batch-level information that is more robust to noises and keeps better sample efficiency. It only requires 1 hour of training on an RTX 4090 to enable a quadruped robot to traverse any terrain under any disturbances. A wealth of real-world experiments demonstrates its agility, even in high-difficulty tasks and cases never occurred during the training process, revealing remarkable open-world generalizability.

Live content is unavailable. Log in and register to view live content