Skip to yearly menu bar Skip to main content


Poster

Learning Nash Equilibria in Rank-1 Games

Nikolas Patris · Ioannis Panageas

Halle B #205
[ ]
Wed 8 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Learning Nash equilibria (NE) in games has garnered significant attention, particularly in the context of training Generative Adversarial Networks (GANs) and multi-agent Reinforcement Learning. The current state-of-the-art in efficiently learning games focuses on landscapes that meet the (weak) Minty property or games characterized by a unique function, often referred to as potential games. A significant challenge in this domain is that computing Nash equilibria is a computationally intractable task [Daskalakis et al. 2009]. In this paper we focus on bimatrix games (A,B) called rank-1. These are games in which the sum of the payoff matrices A+B is a rank 1 matrix; note that standard zero-sum games are rank 0. We show that optimistic gradient descent/ascent converges to an \epsilon-approximate NE after 1/\epsilon^2 log(1/\epsilon) iterates in rank-1 games. We achieve this by leveraging structural results about the NE landscape of rank-1 games Adsul et al. 2021. Notably, our approach bypasses the fact that these games do not satisfy the MVI property.

Live content is unavailable. Log in and register to view live content