FieryGS: In-the-Wild Fire Synthesis with Physics-Integrated Gaussian Splatting
Abstract
We consider the problem of synthesizing photorealistic, physically plausible combustion effects in in-the-wild 3D scenes. Traditional CFD and graphics pipelines can produce realistic fire effects but rely on handcrafted geometry, expert-tuned parameters, and labor-intensive workflows, limiting their scalability to the real world. Recent scene modeling advances like 3D Gaussian Splatting (3DGS) enable high-fidelity real-world scene reconstruction, yet lack physical grounding for combustion. To bridge this gap, we propose FieryGS, a physically-based framework that integrates physically-accurate and user-controllable combustion simulation and rendering within the 3DGS pipeline, enabling realistic fire synthesis for real scenes. Our approach tightly couples three key modules: (1) multimodal large-language-model-based physical material reasoning, (2) efficient volumetric combustion simulation, and (3) a unified renderer for fire and 3DGS. By unifying reconstruction, physical reasoning, simulation, and rendering, FieryGS removes manual tuning and automatically generates realistic, controllable fire dynamics consistent with scene geometry and materials. Our framework supports complex combustion phenomena—including flame propagation, smoke dispersion, and surface carbonization—with precise user control over fire intensity, airflow, ignition location and other combustion parameters. Evaluated on diverse indoor and outdoor scenes, FieryGS outperforms all comparative baselines in visual realism, physical fidelity, and controllability.