RestoreVAR: Visual Autoregressive Generation for All-in-One Image Restoration
Sudarshan Rajagopalan · Kartik Narayan · Vishal Patel
Abstract
The use of latent diffusion models (LDMs) such as Stable Diffusion has significantly improved the perceptual quality of All-in-One image Restoration (AiOR) methods, while also enhancing their generalization capabilities. However, these LDM-based frameworks suffer from slow inference due to their iterative denoising process, rendering them impractical for time-sensitive applications. Visual autoregressive modeling (VAR), a recently introduced approach for image generation, performs scale-space autoregression and achieves comparable performance to that of state-of-the-art diffusion transformers with drastically reduced computational costs. Moreover, our analysis reveals that coarse scales in VAR primarily capture degradations while finer scales encode scene detail, simplifying the restoration process. Motivated by this, we propose RestoreVAR, a novel VAR-based generative approach for AiOR that significantly outperforms LDM-based models in restoration performance while achieving over $\mathbf{10\times}$ faster inference. To optimally exploit the advantages of VAR for AiOR, we propose architectural modifications and improvements, including intricately designed cross-attention mechanisms and a latent-space refinement module, tailored for the AiOR task. Extensive experiments show that RestoreVAR achieves state-of-the-art performance among generative AiOR methods, while also exhibiting strong generalization capabilities. The code will be made publicly available after the review process.
Successful Page Load