Adaptive Mixture of Disentangled Experts for Dynamic Graphs under Distribution Shifts
Abstract
Dynamic graph representation learning under distribution shifts has drawn an increasing amount of attention in the research community, given its wide applicability in real-world scenarios. Existing methods typically employ a fixed-architecture design to extract invariant patterns. However, there may exist evolving distribution shifts in dynamic graphs, leading to suboptimal performance of fixed-architecture designs. To address this issue, we propose a novel adaptive-architecture design to handle evolving distribution shifts over time, to the best of our knowledge, for the first time. The proposed adaptive-architecture design introduces an adaptive mixture of architecture experts to capture invariant patterns under evolving distribution shifts, which imposes three challenges: 1) How to detect and characterize evolving distribution shifts to inform architectural decisions; 2) How to dynamically route different expert architectures to handle varying distribution characteristics; 3) How to ensure that the adaptive mixture of experts effectively discovers invariant patterns. To solve these challenges, we propose a novel \underline{\textbf{Ada}}ptive \underline{\textbf{Mix}}ture of Disentangled Experts (AdaMix) model to adaptively route architecture experts to varying distribution shifts and jointly learn spatio-temporal invariant patterns. Specifically, we propose a spatio-temporal distribution detector to infer evolving distribution shifts by jointly leveraging historical and current information. Building upon this, we develop a prototype-guided mixture of disentangled experts that adaptively routes experts with disentangled factors to different distribution shifts. Finally, we design a distribution-aware intervention mechanism that discovers invariant patterns based on expert selection of nodes. Extensive experiments on both synthetic and real-world datasets demonstrate that our proposed (AdaMix) model significantly outperforms state-of-the-art baselines.