Towards All-Atom Foundation Models for Biomolecular Binding Affinity Prediction
Abstract
Biomolecular interactions play a critical role in biological processes. While recent breakthroughs like AlphaFold 3 have enabled accurate modeling of biomolecular complex structures, predicting binding affinity remains challenging mainly due to limited high-quality data. Recent methods are often specialized for specific types of biomolecular interactions, limiting their generalizability. In this work, we repurpose AlphaFold 3 for representation learning to predict binding affinity, a non-trivial task that requires shifting from generative structure prediction to encoding observed geometry, simplifying the heavily conditioned trunk module, and designing a framework to jointly capture sequence and structural information. To address these challenges, we introduce the Atom-level Diffusion Transformer (ADiT), which takes sequence and structure as inputs, employs a unified tokenization scheme, integrates diffusion transformers, and removes dependencies on multiple sequence alignments and templates. We pre-train three ADiT variants on the PDB dataset with a denoising objective and evaluate them across protein-ligand, drug-target, protein-protein, and antibody-antigen interactions. The model achieves state-of-the-art or competitive performance across benchmarks, scales effectively with model size, and successfully identifies wet-lab validated affinity-enhancing antibody mutations, establishing a generalizable framework for biomolecular interactions. We plan to release the code upon acceptance.