Memba: Membrane-driven Parameter-Efficient Fine-Tuning for Mamba
Abstract
State Space Models (SSMs) have emerged as powerful alternatives to attention-based Transformers, with Mamba demonstrating impressive efficiency and scalability. As these models grow increasingly larger, the need for Parameter-Efficient Fine-Tuning (PEFT) methods becomes critical to adapt pre-trained Mamba to downstream tasks without prohibitive computational costs. However, previous approaches simply apply traditional Transformer-tailored PEFT methods without addressing the unique temporal processing dynamics of SSMs. To address this limitation, we propose Memba, a membrane-driven PEFT approach specifically designed for Mamba. Memba introduces Leaky Integrate Membrane (LIM) neurons as bio-inspired gating mechanisms that naturally accumulate membrane potentials over time, enhancing selective information retention. By strategically combining LIM neurons with Low-Rank Adaptations (LoRA) and cross-layer membrane transfer, our approach significantly improves Mamba's temporal modeling capabilities. Extensive experiments across language and vision tasks demonstrate that Memba achieves substantial improvements over existing PEFT methods.