Feature compression is the root cause of adversarial fragility in neural networks
Jingchao Gao · Ziqing Lu · Raghu Mudumbai · Xiaodong Wu · Jirong Yi · Myung Cho · Catherine Xu · Hui Xie · Weiyu Xu
Abstract
In this paper, we uniquely study the adversarial robustness of deep neural networks (NN) for classification tasks against that of optimal classifiers. We look at the smallest magnitude of possible additive perturbations that can change a classifier's output. We provide a matrix-theoretic explanation of the adversarial fragility of deep neural networks for classification. In particular, our theoretical results show that a neural network's adversarial robustness can degrade as the input dimension $d$ increases. Analytically, we show that neural networks' adversarial robustness can be only $1/\sqrt{d}$ of the best possible adversarial robustness of optimal classifiers. Our theories match remarkably well with numerical experiments of practically trained NN, including NN for ImageNet images. The matrix-theoretic explanation is consistent with an earlier information-theoretic feature-compression-based explanation for the adversarial fragility of neural networks.
Successful Page Load