CTRL&SHIFT: High-quality Geometry-Aware Object Manipulation in Visual Generation
Abstract
Object-level manipulation—relocating or reorienting objects in images or videos while preserving scene realism—is central to film post-production, AR, and creative editing. Yet existing methods struggle to jointly achieve three core goals: background preservation, geometric consistency under viewpoint shifts, and user-controllable transformations. Geometry-based approaches offer precise control but require explicit 3D reconstruction and generalize poorly; diffusion-based methods generalize better but lack fine-grained geometric control. We present Ctrl&Shift, an end-to-end diffusion framework to achieve geometry-consistent object manipulation without explicit 3D representations. Our key insight is to decompose manipulation into two stages—object removal and reference-guided inpainting under explicit camera pose control—and encode both within a unified diffusion process. To enable precise, disentangled control, we design a multi-task, multi-stage training strategy that separates background, identity, and pose signals across tasks. To improve generalization, we introduce a scalable real-world dataset construction pipeline that generates paired image and video samples with estimated relative camera poses. Extensive experiments demonstrate that Ctrl&Shift achieves state-of-the-art results in fidelity, viewpoint consistency, and controllability. To our knowledge, this is the first framework to unify fine-grained geometric control and real-world generalization for object manipulation—without relying on any explicit 3D modeling.