Reasoning Scaffolding: Distilling the Flow of Thought from LLMs
Abstract
The prevailing approach to distilling reasoning from Large Language Models (LLMs)—behavioral cloning from textual rationales—is fundamentally limited. It teaches Small Language Models (SLMs) to mimic surface-level patterns rather than the underlying algorithmic structure of thought, resulting in a critical lack of logical robustness. We argue that instead of cloning text, distillation should transfer this algorithmic structure directly. We introduce Reasoning Scaffolding, a framework that reframes reasoning as a structured generation process. Our method first abstracts the teacher's thought process into a sequence of discrete, interpretable semantic signals (e.g., Contrast, Addition) that act as a scaffold. The student model is then trained via a multi-task objective to both (1) predict the next semantic signal, anticipating the reasoning flow, and (2) generate the corresponding step, conditioned on that signal. This multi-task scheme acts as a powerful regularizer, compelling the student to internalize the computational patterns of coherent reasoning. On a suite of challenging reasoning benchmarks, our method significantly outperforms state-of-the-art distillation in both accuracy and logical consistency, providing a path towards creating smaller models that are genuine reasoners, not just fluent mimics.