The 2nd Workshop on Foundation Models for Science: Real-World Impact and Science-First Design
Abstract
Scientific foundation models should be built for science, not for generic AI tastes or leaderboard prestige. This workshop centers problem-driven design: models that measurably advance real scientific inquiries, e.g., forecasting extreme climate events, accelerating materials discovery, understanding biological mechanisms, co-developed with domain experts and validated against field data, experiments, and downstream impact. We argue that foundation models for science must be built differently from language and vision. Scientific data are physical, causal, spatiotemporal, and often scarce or biased; objectives must reflect mechanistic fidelity, not just predictive accuracy. This calls for scientific priors and constraints, robust uncertainty quantification (UQ), and architectures that natively handle multi-modality (e.g., grids, meshes, spectra, time series, point clouds, text, images, code). It also demands tight integration with classical scientific tools (simulators, PDE solvers, optimization and inference engines, and HPC workflows) to yield hybrid systems that are faster, more accurate, and more trustworthy. We will highlight opportunities and hard problems unique to science: enforcing conservation laws and symmetries; learning across vast spatial and temporal scales; representing extreme events and tipping points; calibrating and validating UQ; and developing evaluation protocols that reward mechanistic insight and actionable reliability. The goal is a roadmap for building, training, and deploying scientific foundation models that accelerate discovery while respecting the structure of the natural world.