Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient

Ming Yin · Mengdi Wang · Yu-Xiang Wang

Keywords: [ Theory ] [ Reinforcement learning theory ]


Abstract:

Offline reinforcement learning, which aims at optimizing sequential decision-making strategies with historical data, has been extensively applied in real-life applications. State-Of-The-Art algorithms usually leverage powerful function approximators (e.g. neural networks) to alleviate the sample complexity hurdle for better empirical performances. Despite the successes, a more systematic under- standing of the statistical complexity for function approximation remains lacking. Towards bridging the gap, we take a step by considering offline reinforcement learning with differentiable function class approximation (DFA). This function class naturally incorporates a wide range of models with nonlinear/nonconvex structures. We show offline RL with differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning (PFQL) algorithm, and our results provide the theoretical basis for understanding a variety of practical heuristics that rely on Fitted Q-Iteration style design. In addition, we further im- prove our guarantee with a tighter instance-dependent characterization. We hope our work could draw interest in studying reinforcement learning with differentiable function approximation beyond the scope of current research.

Chat is not available.