Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Learning Structured Representations by Embedding Class Hierarchy

Siqi Zeng · Remi Tachet des Combes · Han Zhao

Keywords: [ Deep Learning and representational learning ] [ tree embedding ] [ representation learning ] [ structured representations ]


Abstract:

Existing models for learning representations in supervised classification problems are permutation invariant with respect to class labels. However, structured knowledge about the classes, such as hierarchical label structures, widely exists in many real-world datasets, e.g., the ImageNet and CIFAR benchmarks. How to learn representations that can preserve such structures among the classes remains an open problem. To approach this problem, given a tree of class hierarchy, we first define a tree metric between any pair of nodes in the tree to be the length of the shortest path connecting them. We then provide a method to learn the hierarchical relationship of class labels by approximately embedding the tree metric in the Euclidean space of features. More concretely, during supervised training, we propose to use the Cophenetic Correlation Coefficient (CPCC) as a regularizer for the cross-entropy loss to correlate the tree metric of classes and the Euclidean distance in the class-conditioned representations. Our proposed regularizer is computationally lightweight and easy to implement. Empirically, we demonstrate that this approach can help to learn more interpretable representations due to the preservation of the tree metric, and leads to better in-distribution generalization as well as under sub-population shifts over six real-world datasets.

Chat is not available.