Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

CrAM: A Compression-Aware Minimizer

Alexandra Peste · Adrian Vladu · Eldar Kurtic · Christoph H Lampert · Dan Alistarh

Keywords: [ Deep Learning and representational learning ] [ sparsity ] [ optimization ] [ one shot pruning ] [ compression ]


Abstract:

Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (∼ 1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at: https://github.com/IST-DASLab/CrAM .

Chat is not available.