Skip to yearly menu bar Skip to main content


In-Person Poster presentation / poster accept

Mitigating Dataset Bias by Using Per-Sample Gradient

Sumyeong Ahn · SeongYoon Kim · Se-Young Yun

MH1-2-3-4 #23

Keywords: [ Deep Learning and representational learning ] [ Gradient-norm based debiasing ] [ dataset bias ] [ debiasing ]


Abstract:

The performance of deep neural networks is strongly influenced by the training dataset setup. In particular, when attributes with a strong correlation with the target attribute are present, the trained model can provide unintended prejudgments and show significant inference errors (i.e., the dataset bias problem). Various methods have been proposed to mitigate dataset bias, and their emphasis is on weakly correlated samples, called bias-conflicting samples. These methods are based on explicit bias labels provided by humans. However, such methods require human costs. Recently, several studies have sought to reduce human intervention by utilizing the output space values of neural networks, such as feature space, logits, loss, or accuracy. However, these output space values may be insufficient for the model to understand the bias attributes well. In this study, we propose a debiasing algorithm leveraging gradient called Per-sample Gradient-based Debiasing (PGD). PGD is comprised of three steps: (1) training a model on uniform batch sampling, (2) setting the importance of each sample in proportion to the norm of the sample gradient, and (3) training the model using importance-batch sampling, whose probability is obtained in step (2). Compared with existing baselines for various datasets, the proposed method showed state-of-the-art accuracy for the classification task. Furthermore, we describe theoretical understandings of how PGD can mitigate dataset bias.

Chat is not available.