Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Re-parameterizing Your Optimizers rather than Architectures

Xiaohan Ding · Honghao Chen · Xiangyu Zhang · Kaiqi Huang · Jungong Han · Guiguang Ding

Keywords: [ Deep Learning and representational learning ] [ model architecture ] [ deep learning ] [ Re-parameterization ] [ optimizer ]


Abstract:

The well-designed structures in neural networks reflect the prior knowledge incorporated into the models. However, though different models have various priors, we are used to training them with model-agnostic optimizers such as SGD. In this paper, we propose to incorporate model-specific prior knowledge into optimizers by modifying the gradients according to a set of model-specific hyper-parameters. Such a methodology is referred to as Gradient Re-parameterization, and the optimizers are named RepOptimizers. For the extreme simplicity of model structure, we focus on a VGG-style plain model and showcase that such a simple model trained with a RepOptimizer, which is referred to as RepOpt-VGG, performs on par with or better than the recent well-designed models. From a practical perspective, RepOpt-VGG is a favorable base model because of its simple structure, high inference speed and training efficiency. Compared to Structural Re-parameterization, which adds priors into models via constructing extra training-time structures, RepOptimizers require no extra forward/backward computations and solve the problem of quantization. We hope to spark further research beyond the realms of model structure design. Code and models https://github.com/DingXiaoH/RepOptimizers.

Chat is not available.