Skip to yearly menu bar Skip to main content


Session

Oral 2 Track 6: Applications & Social Aspects of Machine Learning

AD1

Abstract:

Chat is not available.

Mon 1 May 6:00 - 6:10 PDT

In-Person Oral presentation / top 5% paper
A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification

Paul F. Jaeger · Carsten Lüth · Lukas Klein · Till Bungert

Reliable application of machine learning-based decision systems in the wild is one of the major challenges currently investigated by the field. A large portion of established approaches aims to detect erroneous predictions by means of assigning confidence scores. This confidence may be obtained by either quantifying the model's predictive uncertainty, learning explicit scoring functions, or assessing whether the input is in line with the training distribution. Curiously, while these approaches all state to address the same eventual goal of detecting failures of a classifier upon real-world application, they currently constitute largely separated research fields with individual evaluation protocols, which either exclude a substantial part of relevant methods or ignore large parts of relevant failure sources. In this work, we systematically reveal current pitfalls caused by these inconsistencies and derive requirements for a holistic and realistic evaluation of failure detection. To demonstrate the relevance of this unified perspective, we present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions w.r.t all relevant methods and failure sources. The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation in the plethora of publicized research on confidence scoring. Code and trained models are at https://github.com/https://github.com/IML-DKFZ/fd-shifts

Mon 1 May 6:10 - 6:20 PDT

In-Person Oral presentation / top 25% paper
Associative Memory Augmented Asynchronous Spatiotemporal Representation Learning for Event-based Perception

Uday Kamal · Saurabh Dash · Saibal Mukhopadhyay

We propose $\textit{EventFormer}$, a computationally efficient event-based representation learning framework for asynchronously processing event camera data. EventFormer treats sparse input events as a spatially unordered set and models their spatial interactions using self-attention mechanism. An associative memory-augmented recurrent module is used to correlate with the stored representation computed from past events. A memory addressing mechanism is proposed to store and retrieve the latent states only $\textit{where}$ these events occur and update them only $\textit{when}$ they occur. The representation learning shift from input space to the latent memory space resulting in reduced computation cost for processing each event. We show that EventFormer achieves 0.5$\%$ and 9$\%$ better accuracy with 30000$\times$ and 200$\times$ less computation compared to the state-of-the-art dense and event-based method, respectively, on event-based object recognition datasets.

Mon 1 May 6:20 - 6:30 PDT

In-Person Oral presentation / top 25% paper
MapTR: Structured Modeling and Learning for Online Vectorized HD Map Construction

Bencheng Liao · Shaoyu Chen · Xinggang Wang · Tianheng Cheng · Qian Zhang · Wenyu Liu · Chang Huang

High-definition (HD) map provides abundant and precise environmental information of the driving scene, serving as a fundamental and indispensable component for planning in autonomous driving system. We present MapTR, a structured end-to-end Transformer for efficient online vectorized HD map construction. We propose a unified permutation-equivalent modeling approach, i.e., modeling map element as a point set with a group of equivalent permutations, which accurately describes the shape of map element and stabilizes the learning process. We design a hierarchical query embedding scheme to flexibly encode structured map information and perform hierarchical bipartite matching for map element learning. MapTR achieves the best performance and efficiency with only camera input among existing vectorized map construction approaches on nuScenes dataset. In particular, MapTR-nano runs at real-time inference speed ($25.1$ FPS) on RTX 3090, $8\times$ faster than the existing state-of-the-art camera-based method while achieving $5.0$ higher mAP. Even compared with the existing state-of-the-art multi-modality method, MapTR-nano achieves $0.7$ higher mAP and $8\times$ faster inference speed, and MapTR-tiny achieves $13.5$ higher mAP and $3\times$ faster inference speed. Abundant qualitative results show that MapTR maintains stable and robust map construction quality in complex and various driving scenes. MapTR is of great application value in autonomous driving. Code and more demos are available at https://github.com/hustvl/MapTR.

Mon 1 May 6:30 - 6:40 PDT

In-Person Oral presentation / top 25% paper
ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning

Olga Golovneva · Moya Chen · spencer poff · Martin Corredor · Luke Zettlemoyer · Maryam Fazel-Zarandi · Asli Celikyilmaz

Large language models show improved downstream task performance when prompted to generate step-by-step reasoning to justify their final answers. These reasoning steps greatly improve model interpretability and verification, but objectively studying their correctness (independent of the final answer) is difficult without reliable methods for automatic evaluation. We simply do not know how often the stated reasoning steps actually support the final end task predictions. In this work, we present ROSCOE, a suite of interpretable, unsupervised automatic scores that improve and extend previous text generation evaluation metrics. To evaluate ROSCOE against baseline metrics, we design a typology of reasoning errors and collect synthetic and human evaluation scores on commonly used reasoning datasets. In contrast with existing metrics, ROSCOE can measure semantic consistency, logicality, informativeness, fluency, and factuality — among other traits — by leveraging properties of step-by-step rationales. We empirically verify the strength of our metrics on five human annotated and six programmatically perturbed diagnostics datasets - covering a diverse set of tasks that require reasoning skills and show that ROSCOE can consistently outperform baseline metrics.

Mon 1 May 6:40 - 6:50 PDT

In-Person Oral presentation / top 25% paper
Ask Me Anything: A simple strategy for prompting language models

Simran Arora · Avanika Narayan · Mayee Chen · Laurel Orr · Neel Guha · Kush Bhatia · Ines Chami · Christopher Re

Large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt that demonstrates how to perform the task and no additional training. Prompting is a brittle process wherein small modifications to the prompt can cause large variations in the model predictions, and therefore significant effort is dedicated towards designing a painstakingly crafted "perfect prompt" for a task. To mitigate the high degree of effort, we instead ask whether collecting multiple decent, yet imperfect, prompts and aggregating them can lead to a high quality prompting strategy. Our observations motivate our proposed method, Ask Me Anything (AMA). We first develop an understanding of the effective prompt formats, finding question-answering (QA) prompts, which encourage open-ended generation ("Who went to the park?") tend to outperform those that restrict the model outputs ("John went to the park. True or False?"). AMA recursively uses the LLM to transform task inputs to the effective QA format. AM generates multiple questions per input and applies these prompts to collect several noisy "votes" for the input's true label. We find the prompts have varying accuracies and dependencies and thus propose to use weak supervision, a procedure for combining the noisy predictions, to produce the final predictions. We evaluate AMA across open-source model families (EleutherAI, BLOOM, OPT, and T0) and sizes (125M-175B parameters), demonstrating an average performance lift of 10.2\% over the few-shot baseline. This simple strategy enables the open-source GPT-J-6B model to match and exceed the performance of few-shot GPT3-175B on 15 of 20 popular benchmarks. Averaged across these tasks, the GPT-J-6B model outperforms few-shot GPT3-175B. We release our code here: https://github.com/HazyResearch/ama_prompting.

Mon 1 May 6:50 - 7:00 PDT

In-Person Oral presentation / top 25% paper
Code Translation with Compiler Representations

Marc Szafraniec · Baptiste Roziere · Hugh Leather · Patrick Labatut · François Charton · Gabriel Synnaeve

In this paper, we leverage low-level compiler intermediate representations (IR) code translation. Traditional transpilers rely on syntactic information and handcrafted rules, which limits their applicability and produces unnatural-looking code. Applying neural machine translation (NMT) approaches to code has successfully broadened the set of programs on which one can get a natural-looking translation. However, they treat the code as sequences of text tokens, and still do not differentiate well enough between similar pieces of code which have different semantics in different languages. The consequence is low quality translation, reducing the practicality of NMT, and stressing the need for an approach significantly increasing its accuracy. Here we propose to augment code translation with IRs, specifically LLVM IR, with results on the C++, Java, Rust, and Go languages. Our method improves upon the state of the art for unsupervised code translation, increasing the number of correct translations by 11% on average, and up to 79% for the Java → Rust pair with greedy decoding. With beam search, it increases the number of correct translations by 5.5% in average. We extend previous test sets for code translation, by adding hundreds of Go and Rust functions. Additionally, we train models with high performance on the problem of IR decompilation, generating programming source code from IR, and study using IRs as intermediary pivot for translation.

Mon 1 May 7:00 - 7:10 PDT

In-Person Oral presentation / top 25% paper
Hidden Markov Transformer for Simultaneous Machine Translation

Shaolei Zhang · Yang Feng

Simultaneous machine translation (SiMT) outputs the target sequence while receiving the source sequence, and hence learning when to start translating each target token is the core challenge for SiMT task. However, it is non-trivial to learn the optimal moment among many possible moments of starting translating, as the moments of starting translating always hide inside the model and can only be supervised with the observed target sequence. In this paper, we propose a Hidden Markov Transformer (HMT), which treats the moments of starting translating as hidden events and the target sequence as the corresponding observed events, thereby organizing them as a hidden Markov model. HMT explicitly models multiple moments of starting translating as the candidate hidden events, and then selects one to generate the target token. During training, by maximizing the marginal likelihood of the target sequence over multiple moments of starting translating, HMT learns to start translating at the moments that target tokens can be generated more accurately. Experiments on multiple SiMT benchmarks show that HMT outperforms strong baselines and achieves state-of-the-art performance.

Mon 1 May 7:10 - 7:20 PDT

In-Person Oral presentation / top 5% paper
Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning

Antonia Creswell · Murray Shanahan · Irina Higgins

Large language models (LLMs) have been shown to be capable of impressive few-shot generalisation to new tasks. However, they still tend to perform poorly on multi-step logical reasoning problems. Here we carry out a comprehensive evaluation of LLMs on 46 tasks that probe different aspects of logical reasoning. We show that language models tend to perform fairly well at single step inference or entailment tasks, but struggle to chain together multiple reasoning steps to solve more complex problems. In light of this, we propose a Selection-Inference (SI) framework that exploits pre-trained LLMs as general processing modules, and alternates between selection and inference to generate a series of interpretable, casual reasoning steps leading to the final answer. We show that a 7B parameter LLM used within the SI framework in a 5-shot generalisation setting, with no fine-tuning, yields a performance improvement of over 100% compared to an equivalent vanilla baseline on a suite of 10 logical reasoning tasks. The same model in the same setting even outperforms a significantly larger 280B parameter baseline on the same suite of tasks. Moreover, answers produced by the SI framework are accompanied by a causal natural-language-based reasoning trace, which has important implications for the safety and trustworthiness of the system.