Skip to yearly menu bar Skip to main content


Poster
in
Workshop: I Can't Believe It's Not Better: Challenges in Applied Deep Learning

Challenges of Multi-Modal Coreset Selection for Depth Prediction

Viktor Moskvoretskii · Narek Alvandian


Abstract:

Coreset selection methods are effective in accelerating training and reducing memory requirements but remain largely unexplored in applied multimodal settings. We adapt a state-of-the-art (SoTA) coreset selection technique for multimodal data, focusing on the depth prediction task.Our experiments with embedding aggregation and dimensionality reduction approaches reveal the challenges of extending unimodal algorithms to multimodal scenarios, highlighting the need for specialized methods to better capture inter-modal relationships.

Chat is not available.