Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Advances in Financial AI: Opportunities, Innovations, and Responsible AI

Fair Feature Importance Scores via Feature Occlusion and Permutation

Camille Little · Madeline Navarro · Santiago Segarra · Genevera Allen


Abstract:

As machine learning models increasingly impact society, their opaque nature poses challenges to trust and accountability, particularly in fairness contexts. Understanding how individual features influence model outcomes is crucial for building interpretable and equitable models. While feature importance metrics for accuracy are well-established, methods for assessing feature contributions to fairness remain underexplored. We propose two model-agnostic approaches to measure fair feature importance. First, we propose to compare model fairness before and after permuting feature values. This simple intervention-based approach decouples a feature and model predictions to measure its contribution to training. Second, we evaluate the fairness of models trained with and without a given feature. This occlusion-based score enjoys dramatic computational simplification via minipatch learning. Our empirical results reflect the simplicity and effectiveness of our proposed metrics for multiple predictive tasks. Both methods offer simple, scalable, and interpretable solutions to quantify the influence of features on fairness, providing new tools for responsible machine learning development.

Chat is not available.