Poster
in
Workshop: 2nd Workshop on Navigating and Addressing Data Problems for Foundation Models (DATA-FM)
Preserving Product Fidelity in Large Scale Image Recontextualization with Diffusion Models
Ishaan Malhi · Praneet Dutta · Ellie Talius · Sally Ma · Brendan Driscoll · Krista Holden · Garima Pruthi · Arunachalam Narayanaswamy
We present a framework for high-fidelity product image recontextualization using text-to-image diffusion models and a novel data augmentation pipeline. This pipeline leverages image-to-video diffusion, in/outpainting, and counterfactual generation to create synthetic training data, addressing limitations of real-world data collection for this task. Our method improves the quality and diversity of generated images by disentangling product representations and enhancing the model's understanding of product characteristics. Evaluation on the ABO dataset and a private product dataset, using automated metrics and human assessment, demonstrates the effectiveness of our framework in generating realistic and compelling product visualizations, with implications for diverse applications such as e-commerce and virtual product showcasing.