Poster
in
Workshop: Integrating Generative and Experimental Platforms for Biomolecular Design
Molecular Property Prediction using Pretrained-BERT and Bayesian Active Learning: A Data-Efficient Approach to Drug Design
Muhammad Arslan Masood · Samuel Kaski · Tianyu Cui
In drug discovery, prioritizing compounds for experimental testing is a critical task that can be optimized through active learning by strategically selecting informative molecules. Active learning typically trains models on labeled examples alone, while unlabeled data is only used for acquisition. This fully supervised approach neglects valuable information present in unlabeled molecular data, impairing both predictive performance and the molecule selection process. We address this limitation by integrating a transformer-based BERT model, pretrained on 1.26 million compounds, into the active learning pipeline. This effectively disentangles representation learning and uncertainty estimation, leading to more reliable molecule selection. Experiments on Tox21 and ClinTox datasets demonstrate that our approach achieves equivalent toxic compound identification with 50\% fewer iterations compared to conventional active learning. Analysis reveals that pretrained BERT representations generate a structured embedding space enabling reliable uncertainty estimation despite limited labeled data, confirmed through Expected Calibration Error measurements. This work establishes that combining pretrained molecular representations with active learning significantly improves both model performance and acquisition efficiency in drug discovery, providing a scalable framework for compound prioritization.