Poster
From Risk to Uncertainty: Generating Predictive Uncertainty Measures via Bayesian Estimation
Nikita Kotelevskii · Vladimir Kondratyev · Martin Takáč · Eric Moulines · Maxim Panov
There are various measures of predictive uncertainty in the literature, but their relationships to each other remain unclear. This paper uses a decomposition of statistical pointwise risk into components associated with different sources of predictive uncertainty: namely, aleatoric uncertainty (inherent data variability) and epistemic uncertainty (model-related uncertainty). Together with Bayesian methods applied as approximations, we build a framework that allows one to generate different predictive uncertainty measures.We validate measures, derived from our framework on image datasets by evaluating its performance in detecting out-of-distribution and misclassified instances using the AUROC metric. The experimental results confirm that the measures derived from our framework are useful for the considered downstream tasks.