Skip to yearly menu bar Skip to main content


Oral Session

Oral Session 4C

Moderators: Yatao Bian · Pan Li

Abstract:
Chat is not available.

Fri 25 April 0:30 - 0:42 PDT

Compositional Entailment Learning for Hyperbolic Vision-Language Models

Avik Pal · Max van Spengler · Guido D'Amely di Melendugno · Alessandro Flaborea · Fabio Galasso · Pascal Mettes

Image-text representation learning forms a cornerstone in vision-language models, where pairs of images and textual descriptions are contrastively aligned in a shared embedding space. Since visual and textual concepts are naturally hierarchical, recent work has shown that hyperbolic space can serve as a high-potential manifold to learn vision-language representation with strong downstream performance. In this work, for the first time we show how to fully leverage the innate hierarchical nature of hyperbolic embeddings by looking beyond individual image-text pairs. We propose Compositional Entailment Learning for hyperbolic vision-language models. The idea is that an image is not only described by a sentence but is itself a composition of multiple object boxes, each with their own textual description. Such information can be obtained freely by extracting nouns from sentences and using openly available localized grounding models. We show how to hierarchically organize images, image boxes, and their textual descriptions through contrastive and entailment-based objectives. Empirical evaluation on a hyperbolic vision-language model trained with millions of image-text pairs shows that the proposed compositional learning approach outperforms conventional Euclidean CLIP learning, as well as recent hyperbolic alternatives, with better zero-shot and retrieval generalization and clearly stronger hierarchical performance.

Fri 25 April 0:42 - 0:54 PDT

Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference under Ambiguities

Zheyuan Zhang · Fengyuan Hu · Jayjun Lee · Freda Shi · Parisa Kordjamshidi · Joyce Chai · Ziqiao Ma

Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.

Fri 25 April 0:54 - 1:06 PDT

Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity

Yam Eitan · Yoav Gelberg · Guy Bar-Shalom · Fabrizio Frasca · Michael Bronstein · Haggai Maron

Topological deep learning (TDL) is a rapidly growing field that seeks to leverage topological structure in data and facilitate learning from data supported on topological objects, ranging from molecules to 3D shapes. Most TDL architectures can be unified under the framework of higher-order message-passing (HOMP), which generalizes graph message-passing to higher-order domains. In the first part of the paper, we explore HOMP's expressive power from a topological perspective, demonstrating the framework's inability to capture fundamental topological and metric invariants such as diameter, orientability, planarity, and homology. In addition, we demonstrate HOMP's limitations in fully leveraging lifting and pooling methods on graphs. To the best of our knowledge, this is the first work to study the expressivity of TDL from a topological perspective. In the second part of the paper, we develop two new classes of architectures -- multi-cellular networks (MCN) and scalable MCN (SMCN) -- which draw inspiration from expressive GNNs. MCN can reach full expressivity, but scaling it to large data objects can be computationally expansive. Designed as a more scalable alternative, SMCN still mitigates many of HOMP's expressivity limitations. Finally, we design new benchmarks for evaluating models based on their ability to learn topological properties of complexes. We then evaluate SMCN on these benchmarks as well as on real-world graph datasets, demonstrating improvements over both HOMP baselines and expressive graph methods, highlighting the value of expressively leveraging topological information.

Fri 25 April 1:06 - 1:18 PDT

Population Transformer: Learning Population-level Representations of Neural Activity

Geeling Chau · Christopher Wang · Sabera Talukder · Vighnesh Subramaniam · Saraswati Soedarmadji · Yisong Yue · Boris Katz · Andrei Barbu

We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scale. We address key challenges in scaling models with neural time-series data, namely, sparse and variable electrode distribution across subjects and datasets. The Population Transformer (PopT) stacks on top of pretrained temporal embeddings and enhances downstream decoding by enabling learned aggregation of multiple spatially-sparse data channels. The pretrained PopT lowers the amount of data required for downstream decoding experiments, while increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end methods, this approach is computationally lightweight, while achieving similar or better decoding performance. We further show how our framework is generalizable to multiple time-series embeddings and neural data modalities. Beyond decoding, we interpret the pretrained and fine-tuned PopT models to show how they can be used to extract neuroscience insights from large amounts of data. We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability. Code is available at https://github.com/czlwang/PopulationTransformer.

Fri 25 April 1:18 - 1:30 PDT

TopoLM: brain-like spatio-functional organization in a topographic language model

Neil Rathi · Johannes Mehrer · Badr AlKhamissi · Taha Binhuraib · Nicholas Blauch · Martin Schrimpf

Neurons in the brain are spatially organized such that neighbors on tissue often exhibit similar response profiles. In the human language system, experimental studies have observed clusters for syntactic and semantic categories, but the mechanisms underlying this functional organization remain unclear. Here, building on work from the vision literature, we develop TopoLM, a transformer language model with an explicit two-dimensional spatial representation of model units. By combining a next-token prediction objective with a spatial smoothness loss, representations in this model assemble into clusters that correspond to semantically interpretable groupings of text and closely match the functional organization in the brain's language system. TopoLM successfully predicts the emergence of a spatially organized cortical language system as well as the organization of functional clusters selective for fine-grained linguistic features empirically observed in human cortex. Our results suggest that the functional organization of the human language system is driven by a unified spatial objective, and provide a functionally and spatially aligned model of language processing in the brain.Neurons in the brain are spatially organized such that neighbors on tissue often exhibit similar response profiles. In the human language system, experimental studies have observed clusters for syntactic and semantic categories, but the mechanisms underlying this functional organization remain unclear. Here, building on work from the vision literature, we develop TopoLM, a transformer language model with an explicit two-dimensional spatial representation of model units. By combining a next-token prediction objective with a spatial smoothness loss, representations in this model assemble into clusters that correspond to semantically interpretable groupings of text and closely match the functional organization in the brain's language system. TopoLM successfully predicts the emergence of a spatially organized cortical language system as well as the organization of functional clusters selective for fine-grained linguistic features empirically observed in human cortex. Our results suggest that the functional organization of the human language system is driven by a unified spatial objective, and provide a functionally and spatially aligned model of language processing in the brain.

Fri 25 April 1:30 - 1:42 PDT

The Geometry of Categorical and Hierarchical Concepts in Large Language Models

Kiho Park · Yo Joong Choe · Yibo Jiang · Victor Veitch

The linear representation hypothesis is the informal idea that semantic concepts are encoded as linear directions in the representation spaces of large language models (LLMs). Previous work has shown how to make this notion precise for representing binary concepts that have natural contrasts (e.g., {male, female}) as directions in representation space. However, many natural concepts do not have natural contrasts (e.g., whether the output is about an animal). In this work, we show how to extend the formalization of the linear representation hypothesis to represent features (e.g., isanimal) as _vectors. This allows us to immediately formalize the representation of categorical concepts as polytopes in the representation space. Further, we use the formalization to prove a relationship between the hierarchical structure of concepts and the geometry of their representations. We validate these theoretical results on the Gemma and LLaMA-3 large language models, estimating representations for 900+ hierarchically related concepts using data from WordNet.