Skip to yearly menu bar Skip to main content


Oral Session

Oral Session 5B

Moderators: Yu Su · Xiangtai Li

Abstract:
Chat is not available.

Fri 25 April 19:30 - 19:42 PDT

How much of my dataset did you use? Quantitative Data Usage Inference in Machine Learning

Yao Tong · Jiayuan Ye · Sajjad Zarifzadeh · Reza Shokri

How much of my data was used to train a machine learning model? This is a critical question for data owners assessing the risk of unauthorized usage of their data to train models. However, previous work mistakenly treats this as a binary problem—inferring whether all-or-none or any-or-none of the data was used—which is fragile when faced with real, non-binary data usage risks. To address this, we propose a fine-grained analysis called Dataset Usage Cardinality Inference (DUCI), which estimates the exact proportion of data used. Our algorithm, leveraging debiased membership guesses, matches the performance of the optimal MLE approach (with a maximum error <0.1) but with significantly lower (e.g., $300 \times$ less) computational cost.

Fri 25 April 19:42 - 19:54 PDT

Proxy Denoising for Source-Free Domain Adaptation

Song Tang · Wenxin Su · Yan Gan · Mao Ye · Jianwei Dr. Zhang · Xiatian Zhu

Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to an unlabeled target domain with no access to the source data. Inspired by the success of large Vision-Language (ViL) models in many applications, the latest research has validated ViL's benefit for SFDA by using their predictions as pseudo supervision. However, we observe that ViL's supervision could be noisy and inaccurate at an unknown rate, potentially introducing additional negative effects during adaption. To address this thus-far ignored challenge, we introduce a novel Proxy Denoising (ProDe) approach. The key idea is to leverage the ViL model as a proxy to facilitate the adaptation process towards the latent domain-invariant space. Concretely, we design a proxy denoising mechanism to correct ViL's predictions. This is grounded on a proxy confidence theory that models the dynamic effect of proxy's divergence against the domain-invariant space during adaptation. To capitalize the corrected proxy, we further derive a mutual knowledge distilling regularization. Extensive experiments show that ProDe significantly outperforms the current state-of-the-art alternatives under both conventional closed-set setting and the more challenging open-set, partial-set, generalized SFDA, multi-target, multi-source, and test-time settings. Our code and data are available at https://github.com/tntek/source-free-domain-adaptation.

Fri 25 April 19:54 - 20:06 PDT

Data Shapley in One Training Run

Jiachen (Tianhao) Wang · Prateek Mittal · Dawn Song · Ruoxi Jia

Data Shapley offers a principled framework for attributing the contribution of data within machine learning contexts. However, the traditional notion of Data Shapley requires re-training models on various data subsets, which becomes computationally infeasible for large-scale models. Additionally, this retraining-based definition cannot evaluate the contribution of data for a specific model training run, which may often be of interest in practice. This paper introduces a novel concept, In-Run Data Shapley, which eliminates the need for model retraining and is specifically designed for assessing data contribution for a particular model of interest. In-Run Data Shapley calculates the Shapley value for each gradient update iteration and accumulates these values throughout the training process. We present several techniques that allow the efficient scaling of In-Run Data Shapley to the size of foundation models. In its most optimized implementation, our method adds negligible runtime overhead compared to standard model training. This dramatic efficiency improvement makes it possible to perform data attribution for the foundation model pretraining stage. We present several case studies that offer fresh insights into pretraining data's contribution and discuss their implications for copyright in generative AI and pretraining data curation.

Fri 25 April 20:06 - 20:18 PDT

Data Selection via Optimal Control for Language Models

Yuxian Gu · Li Dong · Hongning Wang · Yaru Hao · Qingxiu Dong · Furu Wei · Minlie Huang

This work investigates the selection of high-quality pre-training data from massive corpora to enhance LMs' capabilities for downstream usage. We formulate data selection as a generalized Optimal Control problem, which can be solved theoretically by Pontryagin's Maximum Principle (PMP), yielding a set of necessary conditions that characterize the relationship between optimal data selection and LM training dynamics.Based on these theoretical results, we introduce PMP-based Data Selection (PDS), a framework that approximates optimal data selection by solving the PMP conditions. In our experiments, we adopt PDS to select data from CommmonCrawl and show that the PDS-selected corpus accelerates the learning of LMs and constantly boosts their performance on a wide range of downstream tasks across various model sizes.Moreover, the benefits of PDS extend to ~400B models trained on ~10T tokens, as evidenced by the extrapolation of the test loss curves according to the Scaling Laws.PDS also improves data utilization when the pre-training data is limited, by reducing the data demand by 1.8 times, which helps mitigate the quick exhaustion of available web-crawled corpora. Our code, model, and data can be found at https://github.com/microsoft/LMOps/tree/main/data_selection.

Fri 25 April 20:18 - 20:30 PDT

Combatting Dimensional Collapse in LLM Pre-Training Data via Submodular File Selection

Ziqing Fan · Siyuan Du · Shengchao Hu · Pingjie Wang · Li Shen · Ya Zhang · Dacheng Tao · Yanfeng Wang

Selecting high-quality pre-training data for large language models (LLMs) is crucial for enhancing their overall performance under limited computation budget, improving both training and sample efficiency. Recent advancements in file selection primarily rely on using an existing or trained proxy model to assess the similarity of samples to a target domain, such as high quality sources BookCorpus and Wikipedia. However, upon revisiting these methods, the domain-similarity selection criteria demonstrates a diversity dilemma, i.e. dimensional collapse in the feature space, improving performance on the domain-related tasks but causing severe degradation on generic performance.To prevent collapse and enhance diversity, we propose a DiverSified File selection algorithm (DiSF), which selects the most decorrelated text files in the feature space. We approach this with a classical greedy algorithm to achieve more uniform eigenvalues in the feature covariance matrix of the selected texts, analyzing its approximation to the optimal solution under a formulation of $\gamma$-weakly submodular optimization problem. Empirically, we establish a benchmark and conduct extensive experiments on the TinyLlama architecture with models from 120M to 1.1B parameters. Evaluating across nine tasks from the Harness framework, DiSF demonstrates a significant improvement on overall performance. Specifically, DiSF saves 98.5\% of 590M training files in SlimPajama, outperforming the full-data pre-training within a 50B training budget, and achieving about 1.5x training efficiency and 5x data efficiency. Source codeis available at: https://github.com/MediaBrain-SJTU/DiSF.git.

Fri 25 April 20:30 - 20:42 PDT

DEPT: Decoupled Embeddings for Pre-training Language Models

Alex Iacob · Lorenzo Sani · Meghdad Kurmanji · William Shen · Xinchi Qiu · Dongqi Cai · Yan Gao · Nic Lane

Language Model pre-training uses broad data mixtures to enhance performance across domains and languages. However, training on such heterogeneous text corpora requires extensive and expensive efforts. Since these data sources vary significantly in lexical, syntactic, and semantic aspects, they cause negative interference or the ``curse of multilinguality''. To address these challenges we propose a communication-efficient pre-training framework, DEPT. Our method decouples embeddings from the transformer body while simultaneously training the latter on multiple data sources without requiring a shared vocabulary. DEPT can: (1) train robustly and effectively under significant data heterogeneity, (2) minimize token embedding parameters to only what the data source vocabulary requires, while cutting communication costs in direct proportion to both the communication frequency and the reduction in parameters, (3) enhance transformer body plasticity and generalization, improving both average perplexity (up to 20%) and downstream task performance, and (4) enable training with custom optimized vocabularies per data source. We demonstrate DEPT's potential via the first vocabulary-agnostic federated pre-training of billion-scale models, reducing communication costs by orders of magnitude and embedding memory by 4-5x.