Skip to yearly menu bar Skip to main content


Oral Session

Oral Session 5F

Moderators: Yunzhu Li · Jiachen Li

Abstract:
Chat is not available.

Fri 25 April 19:30 - 19:42 PDT

Geometry-aware RL for Manipulation of Varying Shapes and Deformable Objects

Tai Hoang · Huy Le · Philipp Becker · Vien A Ngo · Gerhard Neumann

Manipulating objects with varying geometries and deformable objects is a major challenge in robotics. Tasks such as insertion with different objects or cloth hanging require precise control and effective modelling of complex dynamics. In this work, we frame this problem through the lens of a heterogeneous graph that comprises smaller sub-graphs, such as actuators and objects, accompanied by different edge types describing their interactions. This graph representation serves as a unified structure for both rigid and deformable objects tasks, and can be extended further to tasks comprising multiple actuators. To evaluate this setup, we present a novel and challenging reinforcement learning benchmark, including rigid insertion of diverse objects, as well as rope and cloth manipulation with multiple end-effectors. These tasks present a large search space, as both the initial and target configurations are uniformly sampled in 3D space. To address this issue, we propose a novel graph-based policy model, dubbed Heterogeneous Equivariant Policy (HEPi), utilizing $SE(3)$ equivariant message passing networks as the main backbone to exploit the geometric symmetry. In addition, by modeling explicit heterogeneity, HEPi can outperform Transformer-based and non-heterogeneous equivariant policies in terms of average returns, sample efficiency, and generalization to unseen objects. Our project page is available at https://thobotics.github.io/hepi.

Fri 25 April 19:42 - 19:54 PDT

Instant Policy: In-Context Imitation Learning via Graph Diffusion

Vitalis Vosylius · Edward Johns

Following the impressive capabilities of in-context learning with large transformers, In-Context Imitation Learning (ICIL) is a promising opportunity for robotics. We introduce Instant Policy, which learns new tasks instantly from just one or two demonstrations, achieving ICIL through two key components. First, we introduce inductive biases through a graph representation and model ICIL as a graph generation problem using a learned diffusion process, enabling structured reasoning over demonstrations, observations, and actions. Second, we show that such a model can be trained using pseudo-demonstrations – arbitrary trajectories generated in simulation – as a virtually infinite pool of training data. Our experiments, in both simulation and reality, show that Instant Policy enables rapid learning of various everyday robot tasks. We also show how it can serve as a foundation for cross-embodiment and zero-shot transfer to language-defined tasks.

Fri 25 April 19:54 - 20:06 PDT

Predictive Inverse Dynamics Models are Scalable Learners for Robotic Manipulation

Yang Tian · Sizhe Yang · Jia Zeng · Ping Wang · Dahua Lin · Hao Dong · Jiangmiao Pang

Current efforts to learn scalable policies in robotic manipulation primarily fall into two categories: one focuses on "action," which involves behavior cloning from extensive collections of robotic data, while the other emphasizes "vision," enhancing model generalization by pre-training representations or generative models, also referred to as world models, using large-scale visual datasets. This paper presents an end-to-end paradigm that predicts actions using inverse dynamics models conditioned on the robot's forecasted visual states, named Predictive Inverse Dynamics Models (PIDM). By closing the loop between vision and action, the end-to-end PIDM can be a better scalable action learner. In practice, we use Transformers to process both visual states and actions, naming the model Seer. It is initially pre-trained on large-scale robotic datasets, such as DROID, and can be adapted to real-world scenarios with a little fine-tuning data. Thanks to large-scale, end-to-end training and the continuous synergy between vision and action at each execution step, Seer significantly outperforms state-of-the-art methods across both simulation and real-world experiments. It achieves improvements of 13% on the LIBERO-LONG benchmark, 22% on CALVIN ABC-D, and 43% in real-world tasks. Notably, it demonstrates superior generalization for novel objects, lighting conditions, and environments under high-intensity disturbances. Code and models will be publicly available.

Fri 25 April 20:06 - 20:18 PDT

Data Scaling Laws in Imitation Learning for Robotic Manipulation

Fanqi Lin · Yingdong Hu · Pingyue Sheng · Chuan Wen · Jiacheng You · Yang Gao

Data scaling has revolutionized fields like natural language processing and computer vision, providing models with remarkable generalization capabilities. In this paper, we investigate whether similar data scaling laws exist in robotics, particularly in robotic manipulation, and whether appropriate data scaling can yield single-task robot policies that can be deployed zero-shot for any object within the same category in any environment. To this end, we conduct a comprehensive empirical study on data scaling in imitation learning. By collecting data across numerous environments and objects, we study how a policy’s generalization performance changes with the number of training environments, objects, and demonstrations. Throughout our research, we collect over 40,000 demonstrations and execute more than 15,000 real-world robot rollouts under a rigorous evaluation protocol. Our findings reveal several intriguing results: the generalization performance of the policy follows a roughly power-law relationship with the number of environments and objects. The diversity of environments and objects is far more important than the absolute number of demonstrations; once the number of demonstrations per environment or object reaches a certain threshold, additional demonstrations have minimal effect. Based on these insights, we propose an efficient data collection strategy. With four data collectors working for one afternoon, we collect sufficient data to enable the policies for two tasks to achieve approximately 90\% success rates in novel environments with unseen objects.

Fri 25 April 20:18 - 20:30 PDT

Diffusion-Based Planning for Autonomous Driving with Flexible Guidance

Yinan Zheng · Ruiming Liang · Kexin ZHENG · Jinliang Zheng · Liyuan Mao · Jianxiong Li · Weihao Gu · Rui Ai · Shengbo Li · Xianyuan Zhan · Jingjing Liu

Achieving human-like driving behaviors in complex open-world environments is a critical challenge in autonomous driving. Contemporary learning-based planning approaches such as imitation learning methods often struggle to balance competing objectives and lack of safety assurance,due to limited adaptability and inadequacy in learning complex multi-modal behaviors commonly exhibited in human planning, not to mention their strong reliance on the fallback strategy with predefined rules. We propose a novel transformer-based Diffusion Planner for closed-loop planning, which can effectively model multi-modal driving behavior and ensure trajectory quality without any rule-based refinement. Our model supports joint modeling of both prediction and planning tasks under the same architecture, enabling cooperative behaviors between vehicles. Moreover, by learning the gradient of the trajectory score function and employing a flexible classifier guidance mechanism, Diffusion Planner effectively achieves safe and adaptable planning behaviors. Evaluations on the large-scale real-world autonomous planning benchmark nuPlan and our newly collected 200-hour delivery-vehicle driving dataset demonstrate that Diffusion Planner achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.

Fri 25 April 20:30 - 20:42 PDT

Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks

Michael Matthews · Michael Beukman · Chris Lu · Jakob Foerster

While large models trained with self-supervised learning on offline datasets have shown remarkable capabilities in text and image domains, achieving the same generalisation for agents that act in sequential decision problems remains an open challenge.In this work, we take a step towards this goal by procedurally generating tens of millions of 2D physics-based tasks and using these to train a general reinforcement learning (RL) agent for physical control.To this end, we introduce Kinetix: an open-ended space of physics-based RL environments that can represent tasks ranging from robotic locomotion and grasping to video games and classic RL environments, all within a unified framework.Kinetix makes use of our novel hardware-accelerated physics engine Jax2D that allows us to cheaply simulate billions of environment steps during training.Our trained agent exhibits strong physical reasoning capabilities in 2D space, being able to zero-shot solve unseen human-designed environments. Furthermore, fine-tuning this general agent on tasks of interest shows significantly stronger performance than training an RL agent tabula rasa. This includes solving some environments that standard RL training completely fails at.We believe this demonstrates the feasibility of large scale, mixed-quality pre-training for online RL and we hope that Kinetix will serve as a useful framework to investigate this further.