Workshop
Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in Reliable AI
Grigorios Chrysos · Yixuan Li · Anastasios Angelopoulos · Stephen Bates · Barbara Plank · Mohammad Emtiyaz Khan
How can we trust large language models (LLMs) when they generate text with confidence, but sometimes hallucinate or fail to recognize their own limitations? As foundation models like LLMs and multimodal systems become pervasive across high-stakes domains—from healthcare and law to autonomous systems—the need for uncertainty quantification (UQ) is more critical than ever. Uncertainty quantification provides a measure of how much confidence a model has in its predictions or generations, allowing users to assess when to trust the outputs and when human oversight may be needed. This workshop aims to focus on the question of UQ and hallucination in the modern LLMs and multimodal systems and explore the open questions in the domain.
Schedule
|
Sat 6:00 p.m. - 6:10 p.m.
|
Introduction and preliminaries
SlidesLive Video |
🔗 |
|
Sat 6:10 p.m. - 6:50 p.m.
|
Yisong Yue
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
|
Sat 6:50 p.m. - 7:00 p.m.
|
Break
|
🔗 |
|
Sat 7:00 p.m. - 7:45 p.m.
|
Stefano Ermon
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
|
Sat 7:45 p.m. - 7:50 p.m.
|
Break
|
🔗 |
|
Sat 7:50 p.m. - 8:00 p.m.
|
Poster setup
(
Poster setup
)
>
|
🔗 |
|
Sat 8:00 p.m. - 8:10 p.m.
|
Spotlight presentations
(
Spotlight presentations
)
>
SlidesLive Video |
🔗 |
|
Sat 8:10 p.m. - 9:15 p.m.
|
Poster sesion 1
|
🔗 |
|
Sat 9:15 p.m. - 10:30 p.m.
|
Lunch
|
🔗 |
|
Sat 10:30 p.m. - 10:40 p.m.
|
Spotlight presentations II
SlidesLive Video |
🔗 |
|
Sat 10:40 p.m. - 11:40 p.m.
|
Poster Session II
|
🔗 |
|
Sat 11:40 p.m. - 12:10 a.m.
|
Invited Talk by Jie Ren
SlidesLive Video |
🔗 |
|
Sun 12:10 a.m. - 12:20 a.m.
|
Break
|
🔗 |
|
Sun 12:20 a.m. - 1:10 a.m.
|
Poster Session III
|
🔗 |
|
Sun 1:10 a.m. - 2:00 a.m.
|
Invited talk
(
Mihaela van der Schaar
)
>
SlidesLive Video |
🔗 |
|
-
|
Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models ( Poster ) > link | Omer Belhasin · Idan Kligvasser · George Leifman · Regev Cohen · Erin Rainaldi · Li-Fang Cheng · Nishant Verma · Paul Varghese · Ehud Rivlin · Michael Elad 🔗 |
|
-
|
Can Your Uncertainty Scores Detect Hallucinated Entity? ( Poster ) > link | Min-Hsuan Yeh · Max Kamachee · Seongheon Park · Yixuan Li 🔗 |
|
-
|
Sample-Focused Approach for Robust Uncertainty Quantification in LLMs ( Poster ) > link | Roman Vashurin · Maiya Goloburda · Preslav Nakov · Artem Shelmanov · Maxim Panov 🔗 |
|
-
|
Uncertainty Quantification for MLLMs ( Poster ) > link | Gregory Kang Ruey Lau · Hieu Dao · Bryan Kian Hsiang Low 🔗 |
|
-
|
Monte Carlo Temperature: a robust sampling strategy for LLM's uncertainty quantification methods ( Poster ) > link | Nicola Cecere · Andrea Bacciu · Ignacio Fernández-Tobías · Amin Mantrach 🔗 |
|
-
|
TINY: Rethinking Selection Bias in LLMs: Quantification and Mitigation using Efficient Majority Voting ( Poster ) > link | Guda · Lawrence Francis · Gabrial Ashungafac · Carlee Joe-Wong · Moise Busogi 🔗 |
|
-
|
To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation ( Poster ) > link | Kaustubh Dhole 🔗 |
|
-
|
TINY LongProLIP: A Probabilistic Vision-Language Model with Long Context Text ( Poster ) > link | Sanghyuk Chun · Sangdoo Yun 🔗 |
|
-
|
How to Steer LLM Latents for Hallucination Detection? ( Poster ) > link | Seongheon Park · Xuefeng Du · Min-Hsuan Yeh · Haobo Wang · Yixuan Li 🔗 |
|
-
|
Rethinking Uncertainty Estimation in Natural Language Generation ( Poster ) > link | Lukas Aichberger · Kajetan Schweighofer · Sepp Hochreiter 🔗 |
|
-
|
Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation ( Poster ) > link | Mykyta Ielanskyi · Kajetan Schweighofer · Lukas Aichberger · Sepp Hochreiter 🔗 |
|
-
|
Prune 'n Predict: Optimizing LLM Decision-making with Conformal Prediction ( Poster ) > link | Harit Vishwakarma · Alan Mishler · Thomas Cook · Niccolo Dalmasso · Natraj Raman · Sumitra Ganesh 🔗 |
|
-
|
Conformal Structured Prediction ( Poster ) > link | Botong Zhang · Shuo Li · Osbert Bastani 🔗 |
|
-
|
Finetuning Language Models to Emit Linguistic Expressions of Uncertainty ( Poster ) > link | Arslan Chaudhry · Sridhar Thiagarajan · Dilan Gorur 🔗 |
|
-
|
Understanding Multimodal LLMs Under Distribution Shifts: An Information-Theoretic Approach ( Poster ) > link | Changdae Oh · Zhen Fang · Shawn Im · Xuefeng Du · Yixuan Li 🔗 |
|
-
|
Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models ( Poster ) > link | Ze Yu Zhang · Arun Verma · Finale Doshi-Velez · Bryan Kian Hsiang Low 🔗 |
|
-
|
OUTLIER-AWARE PREFERENCE OPTIMIZATION FOR LARGE LANGUAGE MODELS ( Poster ) > link | Pragya Srivastava · Sai Nalli · Amit Jayant Deshpande · Amit Sharma 🔗 |
|
-
|
Hybrid Preference Optimization for Alignment: Provably Faster Convergence Rates by Combining Offline Preferences with Online Exploration ( Poster ) > link | Avinandan Bose · Zhihan Xiong · Aadirupa Saha · Simon Du · Maryam Fazel 🔗 |
|
-
|
Learning on LLM Output Signatures for Gray Box LLM Behavior Analysis ( Poster ) > link | Guy Bar-Shalom · Fabrizio Frasca · Derek Lim · Yoav Gelberg · Yftah Ziser · Ran El-Yaniv · Gal Chechik · Haggai Maron 🔗 |
|
-
|
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles ( Poster ) > link | Oleksandr Balabanov · Hampus Linander 🔗 |
|
-
|
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models ( Poster ) > link | Haizhou Shi · Yibin Wang · Ligong Han · Huan Zhang · Hao Wang 🔗 |
|
-
|
Generative Uncertainty in Diffusion Models ( Poster ) > link | Metod Jazbec · Eliot Wong-Toi · Guoxuan Xia · Dan Zhang · Eric Nalisnick · Stephan Mandt 🔗 |
|
-
|
Scalable Thompson Sampling via Ensemble++ ( Poster ) > link | Yingru Li · Jiawei Xu · Baoxiang Wang · Zhi-Quan Luo 🔗 |
|
-
|
Predictive Inference Is Really Free with In-Context Learning ( Poster ) > link | Sohom Mukherjee · Ivane Antonov · Kai Günder · Magnus Maichle 🔗 |
|
-
|
Assessing Confidence in Large Language Models by Classifying Task Correctness using Similarity Features ( Poster ) > link | Debarun Bhattacharjya · Balaji Ganesan · Junkyu Lee · Radu Marinescu 🔗 |
|
-
|
Toward Trustworthy Neural Program Synthesis ( Poster ) > link | Wen-Ding Li · Darren Key · Kevin Ellis 🔗 |
|
-
|
[TINY] Building Bridges of Thought: Using the Power of Association to Inspire Creativity in Large Language Models ( Poster ) > link | Fang-Yi Su · Ching Chieh Tsao · Jung-Hsien Chiang 🔗 |
|
-
|
On Verbalized Confidence Scores for LLMs ( Poster ) > link | Daniel Yang · Yao-Hung Hubert Tsai · Makoto Yamada 🔗 |
|
-
|
[TINY] Vision language models can implicitly quantify aleatoric uncertainty ( Poster ) > link | Xi Wang · Eric Nalisnick 🔗 |
|
-
|
Uncertainty of Vision Medical Foundation Models ( Poster ) > link | Haoxu Huang · Narges Razavian 🔗 |
|
-
|
FastRM: An efficient and automatic explainability framework for multimodal generative models ( Poster ) > link | Gabriela Ben-Melech Stan · Estelle Aflalo · Man Luo · Shachar Rosenman · Tiep Le · Sayak Paul · Shao-Yen Tseng · Vasudev Lal 🔗 |
|
-
|
Uncertainty-Aware Step-wise Verification with Generative Reward Models ( Poster ) > link | Zihuiwen Ye · Luckeciano Melo · Younesse Kaddar · Phil Blunsom · Sam Staton · Yarin Gal 🔗 |
|
-
|
Adaptive Elicitation of Latent Information Using Natural Language ( Poster ) > link | Jimmy Wang · Thomas Zollo · Richard Zemel · Hongseok Namkoong 🔗 |
|
-
|
Understanding the Sources of Uncertainty for Large Language and Multimodal Models ( Poster ) > link | Ziran Yang · Shibo Hao · Hao Sun · Lai Jiang · Qiyue Gao · Yian Ma · Zhiting Hu 🔗 |
|
-
|
TINY: Semantic-based Uncertainty Quantification in LLMS: A Case Study on Medical Explanation Generation Task. ( Poster ) > link | Nicholas Kian Boon Tan · Mehul Motani 🔗 |
|
-
|
Towards Lighter and Robust Evaluation for Retrieval Augmented Generation ( Poster ) > link | Alex-Răzvan Ispas · Charles-Elie Simon · Fabien Caspani · Vincent Guigue 🔗 |
|
-
|
DETECTING UNRELIABLE RESPONSES IN GEN- ERATIVE VISION-LANGUAGE MODELS VIA VISUAL UNCERTAINTY ( Poster ) > link | Kiana Avestimehr · Emily Aye · Zalan Fabian · Erum Mushtaq 🔗 |
|
-
|
Semantic Calibration of LLMs Through the Lens of Temperature Scaling ( Poster ) > link | Tom A. Lamb · Desi R Ivanova · Philip Torr · Tim G. J. Rudner 🔗 |