Workshop
Frontiers in Probabilistic Inference: learning meets Sampling
Tara Akhound-Sadegh · Marta Skreta · Yuanqi Du · Sarthak Mittal · Joey Bose · Alexander Tong · Kirill Neklyudov · Max Welling · Michael Bronstein · Arnaud Doucet · Aapo Hyvarinen
Probabilistic inference, particularly through the use of sampling-based methods, is a cornerstone for modeling across diverse fields, from machine learning and statistics to natural sciences such as physics, biology, and chemistry. However, many challenges exist, including scaling, which has resulted in the development of new machine learning methods. In response to these rapid developments, we propose a workshop, Frontiers in Probabilistic Inference: learning meets Sampling (FIP), to foster collaboration between communities working on sampling and learning-based inference. The workshop aims to center community discussions on (i) key challenges in sampling, (ii) new sampling methods, and (iii) their applications to natural sciences and uncertainty estimation. We have assembled an exciting speaker list with diverse perspectives; our goal is that attendees leave with a deeper understanding of the latest advances in sampling methods, practical insights into their applications, and new connections to collaborate on future research endeavors.
Schedule
|
Sun 6:00 p.m. - 6:15 p.m.
|
Introduction & Opening Remarks
(
Intro
)
>
SlidesLive Video |
Tara Akhound-Sadegh 🔗 |
|
Sun 6:15 p.m. - 6:45 p.m.
|
Adaptive Bayesian Intelligence
(
Invited Talk
)
>
SlidesLive Video |
Mohammad Emtiyaz Khan 🔗 |
|
Sun 6:45 p.m. - 7:00 p.m.
|
Coffee Break I
|
🔗 |
|
Sun 7:00 p.m. - 7:10 p.m.
|
Underdamped Diffusion Bridges with Applications to Sampling
(
Oral
)
>
SlidesLive Video |
🔗 |
|
Sun 7:10 p.m. - 7:20 p.m.
|
Adjoint Sampling: Highly-Scalable Diffusion Samplers via Adjoint Matching
(
Oral
)
>
SlidesLive Video |
🔗 |
|
Sun 7:20 p.m. - 7:30 p.m.
|
Approximate Posteriors in Neural Networks: A Sampling Perspective
(
Oral
)
>
SlidesLive Video |
Julius Kobialka · Emanuel Sommer 🔗 |
|
Sun 7:30 p.m. - 8:00 p.m.
|
Efficient variational inference with generative models
(
Invited Talk
)
>
SlidesLive Video |
Grant Rotskoff 🔗 |
|
Sun 8:00 p.m. - 9:00 p.m.
|
Poster session I
(
Poster Session
)
>
|
🔗 |
|
Sun 9:00 p.m. - 10:00 p.m.
|
Lunch
|
🔗 |
|
Sun 10:00 p.m. - 10:30 p.m.
|
Sampling and free energy estimation with approximate transports: challenges and opportunities in training neural samplers
(
Invited Talk
)
>
SlidesLive Video |
Francisco Vargas 🔗 |
|
Sun 10:30 p.m. - 11:00 p.m.
|
Non-equilibrium transport sampler: Another perspective on Jarzynski
(
Invited Talk
)
>
SlidesLive Video |
Michael Albergo 🔗 |
|
Sun 11:00 p.m. - 11:10 p.m.
|
LEAPS: A discrete neural sampler via locally equivariant networks
(
Oral
)
>
SlidesLive Video |
Peter Holderrieth 🔗 |
|
Sun 11:10 p.m. - 11:20 p.m.
|
Debiasing Guidance for Discrete Diffusion with Sequential Monte Carlo
(
Oral
)
>
SlidesLive Video |
Lee Kit · Paul Jeha 🔗 |
|
Sun 11:20 p.m. - 11:30 p.m.
|
Distributionally Robust Posterior Sampling - A Variational Bayes Approach
(
Oral
)
>
SlidesLive Video |
Bohan Wu 🔗 |
|
Sun 11:30 p.m. - 12:00 a.m.
|
Mixture models: a lens on score estimation, feature localization, and guidance
(
Invited Talk
)
>
SlidesLive Video |
Sitan Chen 🔗 |
|
Mon 12:00 a.m. - 12:15 a.m.
|
Coffee Break II
|
🔗 |
|
Mon 12:15 a.m. - 12:45 a.m.
|
Sampling multimodal distributions by denoising
(
Invited Talk
)
>
SlidesLive Video |
Marylou Gabrié 🔗 |
|
Mon 12:45 a.m. - 1:45 a.m.
|
Panel
(
Panel Session
)
>
SlidesLive Video |
Ricky T. Q. Chen · Michael Hutchinson · Sinho Chewi · Molei Tao · Pranav Murugan 🔗 |
|
Mon 1:45 a.m. - 2:45 a.m.
|
Poster Session II
(
Poster Session
)
>
|
🔗 |
|
Mon 2:45 a.m. - 3:00 a.m.
|
Closing remarks & Best paper announcement
(
Closing Remarks
)
>
|
Tara Akhound-Sadegh 🔗 |
|
-
|
Recurrent Memory for Online Interdomain Gaussian Processes ( Poster ) > link | Wenlong Chen · Naoki Kiyohara · Harrison Zhu · Yingzhen Li 🔗 |
|
-
|
Score-Debiased Kernel Density Estimation ( Poster ) > link | Elliot Epstein · Rajat Vadiraj Dwaraknath · Thanawat Sornwanee · John Winnicki · Jerry Liu 🔗 |
|
-
|
EQM-MPD: EQUIVARIANT ON-MANIFOLD MOTION PLANNING DIFFUSION ( Poster ) > link | Evangelos Chatzipantazis · Nishanth Arun Rao · Kostas Daniilidis 🔗 |
|
-
|
Debiasing Guidance for Discrete Diffusion with Sequential Monte Carlo ( Poster ) > link | Lee Kit · Paul Jeha · Jes Frellsen · Pietro Lio · Michael Albergo · Francisco Vargas 🔗 |
|
-
|
Underdamped Diffusion Bridges with Applications to Sampling ( Poster ) > link | Denis Blessing · Julius Berner · Lorenz Richter · Gerhard Neumann 🔗 |
|
-
|
Performance Evaluation of the Tensor Train Sampler in ML QUBO-based ADMET Classification ( Poster ) > link | Hadi Salloum · Kamil Sabbagh · Ruslan Lukin · Gleb Ryzhakov · Yaroslav Kholodov 🔗 |
|
-
|
Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space ( Poster ) > link | Yangming Li · Chieh-Hsin Lai · Carola-Bibiane Schönlieb · Yuki Mitsufuji · Stefano Ermon 🔗 |
|
-
|
A Simulation-Free Deep Learning Approach to Stochastic Optimal Control ( Poster ) > link | Yuan Yue · Mathieu Lauriere · Eric Vanden-Eijnden 🔗 |
|
-
|
Provable Maximum Entropy Manifold Exploration via Diffusion Models ( Poster ) > link | Riccardo De Santi · Marin Vlastelica · Ya-Ping Hsieh · Zebang Shen · Niao He · Andreas Krause 🔗 |
|
-
|
A Probabilistic Approach to Self-Supervised Learning using Cyclical Stochastic Gradient MCMC ( Poster ) > link | Masoumeh Javanbakhat · Christoph Lippert 🔗 |
|
-
|
Shaping Inductive Bias in Diffusion Models through Frequency-Based Noise Control ( Poster ) > link | Thomas Jiralerspong · Berton Earnshaw · Jason Hartford · Yoshua Bengio · Luca Scimeca 🔗 |
|
-
|
StochSync: Stochastic Diffusion Synchronization for Image Generation in Arbitrary Spaces ( Poster ) > link | Kyeongmin Yeo · Jaihoon Kim · Minhyuk Sung 🔗 |
|
-
|
Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models ( Poster ) > link | Siddarth Venkatraman · Mohsin Hasan · Minsu Kim · Luca Scimeca · Marcin Sendera · Yoshua Bengio · Glen Berseth · Nikolay Malkin 🔗 |
|
-
|
Variational diffusion transformers for conditional sampling of supernovae spectra ( Poster ) > link | Yunyi Shen · Alexander Gagliano 🔗 |
|
-
|
Steering Rectified Flow Models in the Vector Field for Controlled Image Generation ( Poster ) > link | Maitreya Patel · Song Wen · Dimitris Metaxas · 'YZ' Yezhou Yang 🔗 |
|
-
|
Greed is Good: Guided Generation from a Greedy Perspective ( Poster ) > link | Zander W. Blasingame · Chen Liu 🔗 |
|
-
|
Inherent Exploration via Sampling for Stochastic Policies ( Poster ) > link | Zhenpeng Shi · Chi Xu · Huaze Tang · Wenbo Ding 🔗 |
|
-
|
Blink of an eye: a simple theory for feature localization in generative models ( Poster ) > link | Marvin Li · Aayush Karan · Sitan Chen 🔗 |
|
-
|
Sampling On Metric Graphs ( Poster ) > link | Rajat Vadiraj Dwaraknath · Lexing Ying 🔗 |
|
-
|
Efficiently Warmstarting MCMC for BNNs ( Poster ) > link | David Adrian Rundel · Emanuel Sommer · Bernd Bischl · David Rügamer · Matthias Feurer 🔗 |
|
-
|
Quantification vs. Reduction: On Evaluating Regression Uncertainty ( Poster ) > link | Domokos M. Kelen · Ádám Jung · Andras Benczur 🔗 |
|
-
|
Global-Order GFlowNets ( Poster ) > link | Lluis Pastor Pérez · Javier Alonso Garcia · Lukas Mauch 🔗 |
|
-
|
Consistency Training with Physical Constraints ( Poster ) > link | Che-Chia Chang · Chen-Yang Dai · Te-Sheng Lin · Ming-Chih Lai · Chieh-Hsin Lai 🔗 |
|
-
|
Neural Nonmyopic Bayesian Optimization in Dynamic Cost Settings ( Poster ) > link | Sang Truong · Duc Nguyen · Willie Neiswanger · Ryan-Rhys Griffiths · Stefano Ermon · Nick Haber · Sanmi Koyejo 🔗 |
|
-
|
Flat Posterior For Bayesian Model Averaging ( Poster ) > link | Sungjun Lim · Jeyoon Yeom · Sooyon Kim · Hoyoon Byun · Jinho Kang · Yohan Jung · Jiyoung Jung · Kyungwoo Song 🔗 |
|
-
|
DeepRV: pre-trained spatial priors for accelerated disease mapping. ( Poster ) > link | Jhonathan Navott · Daniel Jenson · Seth Flaxman · Elizaveta Semenova 🔗 |
|
-
|
Phase-aware Training Schedule Simplifies Learning in Flow-Based Generative Models ( Poster ) > link | Francesco Maria Gabriele Insulla · Santiago Aranguri 🔗 |
|
-
|
Action-Minimization Meets Generative Modeling: Efficient Transition Path Sampling with the Onsager-Machlup Functional ( Poster ) > link | Sanjeev Raja · Martin Sipka · Michael Psenka · Tobias Kreiman · Michal Pavelka · Aditi Krishnapriyan 🔗 |
|
-
|
Efficient Asynchronize Stochastic Gradient Algorithm with Structured Data ( Poster ) > link | Zhizhou Sha · Zhao Song · Mingquan Ye 🔗 |
|
-
|
Does Unsupervised Domain Adaptation Improve the Robustness of Amortized Bayesian Inference? A Systematic Evaluation ( Poster ) > link | Lasse Elsemüller · Valentin Pratz · Mischa von Krause · Paul-Christian Bürkner · Stefan Radev 🔗 |
|
-
|
Do You See the Shape? Diffusion Models for Noisy Radar Scattering Problems ( Poster ) > link | Neel Sortur · Justin Goodwin · Rajmonda Caceres · Robin Walters 🔗 |
|
-
|
Tensor-Train Unsupervised Image Segmentation ( Poster ) > link | Hadi Salloum · Kamil Sabbagh · Osama Orabi · Amine Trabelsi · Ruslan Lukin · Yaroslav Kholodov 🔗 |
|
-
|
Nested Slice Sampling ( Poster ) > link | David Yallup · Namu Kroupa · Will Handley 🔗 |
|
-
|
PepTune: De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion ( Poster ) > link | Sophia Tang · Yinuo Zhang · Pranam Chatterjee 🔗 |
|
-
|
Improving the evaluation of samplers on multi-modal targets ( Poster ) > link | Louis Grenioux · Maxence Noble · Marylou Gabrié 🔗 |
|
-
|
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective ( Poster ) > link | Jia-Jie Zhu 🔗 |
|
-
|
Single-Step Consistent Diffusion Samplers ( Poster ) > link | Pascal Dube · Patrick Pynadath · Ruqi Zhang 🔗 |
|
-
|
Train for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffusions ( Poster ) > link | Jaeyeon Kim · Kulin Shah · Vasilis Kontonis · Sham Kakade · Sitan Chen 🔗 |
|
-
|
Approximate Posteriors in Neural Networks: A Sampling Perspective ( Poster ) > link | Julius Kobialka · Emanuel Sommer · Juntae Kwon · Daniel Dold · David Rügamer 🔗 |
|
-
|
Sample Quality-Likelihood trade-off in Diffusion Models ( Poster ) > link | Yasin Esfandiari · Stefan Bauer · Sebastian Stich · Andrea Dittadi 🔗 |
|
-
|
Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms ( Poster ) > link | Yinuo Ren · Haoxuan Chen · Yuchen Zhu · Wei Guo · Yongxin Chen · Grant Rotskoff · Molei Tao · Lexing Ying 🔗 |
|
-
|
Quasi-random Multi-Sample Inference for Large Language Models ( Poster ) > link | Avinash Amballa · Aditya Parashar · Aditya Vikram Singh · Jinlin Lai · Benjamin Rozonoyer 🔗 |
|
-
|
Atomic Posterior Ensembles for Simulation-Based Inference ( Poster ) > link | Sam Griesemer · Willie Neiswanger · Yan Liu 🔗 |
|
-
|
Can Transformers Learn Full Bayesian Inference In Context? ( Poster ) > link | Arik Reuter · Tim G. J. Rudner · Vincent Fortuin · David Rügamer 🔗 |
|
-
|
Clifford Group Equivariant Diffusion Models For 3D Molecular Generation ( Poster ) > link | Cong Liu · Sharvaree Vadgama · David Ruhe · Erik Bekkers · Patrick Forré 🔗 |
|
-
|
Probabilistic video prediction using conditional score diffusion ( Poster ) > link | Pierre-Etienne Fiquet · Eero Simoncelli 🔗 |
|
-
|
Scalable Thompson Sampling via Ensemble++ ( Poster ) > link | Yingru Li · Jiawei Xu · Baoxiang Wang · Zhi-Quan Luo 🔗 |
|
-
|
Distributionally Robust Posterior Sampling - A Variational Bayes Approach ( Poster ) > link | Bohan Wu · David Blei 🔗 |
|
-
|
Data-Free Score-Based Deterministic Sampling ( Poster ) > link | Vasily Ilin · Bamdad Hosseini · Jingwei Hu 🔗 |
|
-
|
Uncertainty Quantification for Prior-Fitted Networks using Martingale Posteriors ( Poster ) > link | Thomas Nagler · David Rügamer 🔗 |
|
-
|
Robust Amortized Bayesian Inference with Self-Consistency Losses on Unlabeled Data ( Poster ) > link | Aayush Mishra · Daniel Habermann · Marvin Schmitt · Stefan Radev · Paul-Christian Bürkner 🔗 |
|
-
|
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts ( Poster ) > link | Marta Skreta · Tara Akhound-Sadegh · Viktor Oganesian · Roberto Bondesan · Alan Aspuru-Guzik · Arnaud Doucet · Rob Brekelmans · Alexander Tong · Kirill Neklyudov 🔗 |
|
-
|
Deep Optimal Sensor Placement for Black Box Stochastic Simulations ( Poster ) > link | Paula Cordero Encinar · Tobias Schröder · Peter Yatsyshin · Andrew Duncan 🔗 |
|
-
|
Scaling Deep Learning Solutions for Transition Path Sampling ( Poster ) > link | Jungyoon Lee · Michael Plainer · Yuanqi Du · Lars Holdijk · Rob Brekelmans · Dominique Beaini · Kirill Neklyudov 🔗 |
|
-
|
Amortized Posterior Sampling with Diffusion Prior Distillation ( Poster ) > link | Abbas Mammadov · Hyungjin Chung · Jong Chul YE 🔗 |
|
-
|
Learning Distributions of Complex Fluid Simulations with Diffusion Graph Networks ( Poster ) > link | Mario Lino · Tobias Pfaff · Nils Thuerey 🔗 |
|
-
|
Self-Supervised Learning Encodes Uncertainty ( Poster ) > link | Miguel De Llanza Varona · Ryan Singh · Christopher Buckley 🔗 |
|
-
|
PREDICTING 3D STRUCTURE BY LATENT POSTERIOR SAMPLING ( Poster ) > link | Azmi Heidar · Dan Rosenbaum 🔗 |
|
-
|
LEAPS: A discrete neural sampler via locally equivariant networks ( Poster ) > link | Peter Holderrieth · Michael Albergo · Tommi Jaakkola 🔗 |
|
-
|
Neural Flow Samplers with Shortcut Models ( Poster ) > link | Wuhao Chen · Zijing Ou · Yingzhen Li 🔗 |
|
-
|
VIPaint: Image Inpainting with Pre-Trained Diffusion Models via Variational Inference ( Poster ) > link | Sakshi Agarwal · Gabriel Hope · Erik Sudderth 🔗 |
|
-
|
Wild posteriors in the wild ( Poster ) > link | Yunyi Shen · Tamara Broderick 🔗 |
|
-
|
Sampling through Algorithmic Diffusion in non-convex Perceptron problems ( Poster ) > link | Elizaveta Demyanenko · Davide Straziota · Carlo Lucibello · Carlo Baldassi 🔗 |
|
-
|
$\alpha$-PFN: In-Context Learning Entropy Search ( Poster ) > link | Tom Viering · Steven Adriaensen · Herilalaina Rakotoarison · Samuel Müller · Carl Hvarfner · Eytan Bakshy · Frank Hutter 🔗 |
|
-
|
Iterative Importance Fine-tuning of Diffusion Models ( Poster ) > link | Alexander Denker · Shreyas Padhy · Francisco Vargas · Johannes Hertrich 🔗 |
|
-
|
Electrostatics-based particle sampling and approximate inference ( Poster ) > link | Yongchao Huang 🔗 |
|
-
|
Follow Hamiltonian Leader: An Efficient Energy-Guided Sampling Method ( Poster ) > link | Yunfei Teng · Sixin Zhang · Yao Li · Kai Chen · Di He · Qiwei Ye 🔗 |
|
-
|
DDPS:\\Discrete Diffusion Posterior Sampling for Layered Graphs ( Poster ) > link | Hao Luan · See-Kiong Ng · Chun Kai Ling 🔗 |
|
-
|
von Mises-Fisher Sampling of GloVe Vectors ( Poster ) > link | Walid Bendada · Guillaume Salha-Galvan · Romain Hennequin · Théo Bontempelli · Thomas Bouabça · Tristan Cazenave 🔗 |
|
-
|
Rethinking the Training of Diffusion Bridge Samplers: Losses and Exploration ( Poster ) > link | Sebastian Sanokowski · Christoph Bartmann · Lukas Gruber · Sepp Hochreiter · Sebastian Lehner 🔗 |
|
-
|
No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Samplers ( Poster ) > link | Jiajun He · Yuanqi Du · Francisco Vargas · Dinghuai Zhang · Shreyas Padhy · RuiKang OuYang · Carla Gomes · José Miguel Hernández Lobato 🔗 |
|
-
|
Scalable Equilibrium Sampling with Sequential Boltzmann Generators ( Poster ) > link | Charlie Tan · Joey Bose · Chen Lin · Leon Klein · Michael Bronstein · Alexander Tong 🔗 |
|
-
|
Path Planning for Masked Diffusion Models with Applications to Biological Sequence Generation ( Poster ) > link | Zhangzhi Peng · Zachary Bezemek · Sawan Patel · Jarrid Rector-Brooks · Sherwood Yao · Alexander Tong · Pranam Chatterjee 🔗 |
|
-
|
Adjoint Sampling: Highly-Scalable Diffusion Samplers via Adjoint Matching ( Poster ) > link |
13 presentersAaron Havens · Benjamin Kurt Miller · Bing Yan · Carles Domingo i Enrich · Anuroop Sriram · Daniel Levine · Brandon Wood · Bin Hu · Brandon Amos · Brian Karrer · Xiang Fu · Guan-Horng Liu · Ricky T. Q. Chen |
|
-
|
Controllable Generation via Locally Constrained Resampling ( Poster ) > link | Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck 🔗 |
|
-
|
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations ( Poster ) > link | Grigory Bartosh · Dmitry P. Vetrov · Christian A. Naesseth 🔗 |
|
-
|
Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization ( Poster ) > link | Taeyoung Yun · Kiyoung Om · Jaewoo Lee · Sujin Yun · Jinkyoo Park 🔗 |
|
-
|
SFBD: A Method for Training Diffusion Models with Noisy Data ( Poster ) > link | Haoye Lu · Qifan Wu · Yaoliang Yu 🔗 |
|
-
|
PINN-MEP: Continuous Neural Representations for Minimum Energy Path Discovery in Molecular Systems ( Poster ) > link | Magnus Petersen · Roberto Covino 🔗 |
|
-
|
Ensemble Kalman Sampling and Diffusion Prior in Tandem: A Split Gibbs Framework ( Poster ) > link | Austin Wang · Hongkai Zheng · Zihui Wu · Ricardo Baptista · Daniel Zhengyu Huang · Yisong Yue 🔗 |
|
-
|
Generalised Parallel Tempering: Flexible Replica Exchange via Flows and Diffusions ( Poster ) > link | Leo Zhang · Peter Potaptchik · George Deligiannidis · Arnaud Doucet · Hai-Dang Dau · Saifuddin Syed 🔗 |
|
-
|
Low Stein Discrepancy via Message-Passing Monte Carlo ( Poster ) > link | Nathan Kirk · T. Konstantin Rusch · Jakob Zech · Daniela Rus 🔗 |
|
-
|
Learning Decision Trees as Amortized Structure Inference ( Poster ) > link | Mohammed Mahfoud · Ghait Boukachab · Michał Koziarski · Alex Hernandez-Garcia · Stefan Bauer · Yoshua Bengio · Nikolay Malkin 🔗 |
|
-
|
Inference-Time Prior Adaptation in Simulation-Based Inference via Guided Diffusion Models ( Poster ) > link | Paul Chang · Severi Rissanen · Nasrulloh Loka · Daolang Huang · Luigi Acerbi 🔗 |
|
-
|
Beyond Schrödinger Bridges: A Least-Squares Approach for Learning Stochastic Dynamics with Unknown Volatility ( Poster ) > link | Renato Berlinghieri · Yunyi Shen · Tamara Broderick 🔗 |
|
-
|
Why Masking Diffusion Works: Condition on the Jump Schedule for Improved Discrete Diffusion ( Poster ) > link | Alan Amin · Nate Gruver · Andrew Gordon Wilson 🔗 |
|
-
|
Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond ( Poster ) > link | Wei Guo · Molei Tao · Yongxin Chen 🔗 |
|
-
|
Continuously Tempered Diffusion Samplers ( Poster ) > link | Ezra Erives · Bowen Jing · Peter Holderrieth · Tommi Jaakkola 🔗 |