Invited Talk: Alexei Efros
Self-Supervision for Learning from the Bottom Up
Why do self-supervised learning? A common answer is: "because data labeling is expensive." In this talk, I will argue that there are other, perhaps more fundamental reasons for working on self-supervision. First, it should allow us to get away from the tyranny of top-down semantic categorization and force meaningful associations to emerge naturally from the raw sensor data in a bottom-up fashion. Second, it should allow us to ditch fixed datasets and enable continuous, online learning, which is a much more natural setting for real-world agents. Third, and most intriguingly, there is hope that it might be possible to force a self-supervised task curriculum to emerge from first principles, even in the absence of a pre-defined downstream task or goal, similar to evolution. In this talk, I will touch upon these themes to argue that, far from running its course, research in self-supervised learning is only just beginning.
Bio :
Poster Session 12 Fri 7 May 02:00 a.m.
[ Virtual ]

In the era of causal revolution, identifying the causal effect of an exposure on the outcome of interest is an important problem in many areas, such as epidemics, medicine, genetics, and economics. Under a general causal graph, the exposure may have a direct effect on the outcome and also an indirect effect regulated by a set of mediators. An analysis of causal effects that interprets the causal mechanism contributed through mediators is hence challenging but on demand. To the best of our knowledge, there are no feasible algorithms that give an exact decomposition of the indirect effect on the level of individual mediators, due to common interaction among mediators in the complex graph. In this paper, we establish a new statistical framework to comprehensively characterize causal effects with multiple mediators, namely, ANalysis Of Causal Effects (ANOCE), with a newly introduced definition of the mediator effect, under the linear structure equation model. We further propose a constrained causal structure learning method by incorporating a novel identification constraint that specifies the temporal causal relationship of variables. The proposed algorithm is applied to investigate the causal effects of 2020 Hubei lockdowns on reducing the spread of the coronavirus in Chinese major cities out …
[ Virtual ]

Contrastive learning has recently been a core for unsupervised visual representation learning. Without human annotation, the common practice is to perform an instance discrimination task: Given a query image crop, label crops from the same image as positives, and crops from other randomly sampled images as negatives. An important limitation of this label assignment is that it can not reflect the heterogeneous similarity of the query crop to crops from other images, but regarding them as equally negative. To address this issue, inspired by consistency regularization in semi-supervised learning, we propose Consistent Contrast (CO2), which introduces a consistency term into unsupervised contrastive learning framework. The consistency term takes the similarity of the query crop to crops from other images as unlabeled, and the corresponding similarity of a positive crop as a pseudo label. It then encourages consistency between these two similarities. Empirically, CO2 improves Momentum Contrast (MoCo) by 2.9% top-1 accuracy on ImageNet linear protocol, 3.8% and 1.1% top-5 accuracy on 1% and 10% labeled semi-supervised settings. It also transfers to image classification, object detection, and semantic segmentation on PASCAL VOC. This shows that CO2 learns better visual representations for downstream tasks.
[ Virtual ]
Ensemble methods which average over multiple neural network predictions are a simple approach to improve a model’s calibration and robustness. Similarly, data augmentation techniques, which encode prior information in the form of invariant feature transformations, are effective for improving calibration and robustness. In this paper, we show a surprising pathology: combining ensembles and data augmentation can harm model calibration. This leads to a trade-off in practice, whereby improved accuracy by combining the two techniques comes at the expense of calibration. On the other hand, selecting only one of the techniques ensures good uncertainty estimates at the expense of accuracy. We investigate this pathology and identify a compounding under-confidence among methods which marginalize over sets of weights and data augmentation techniques which soften labels. Finally, we propose a simple correction, achieving the best of both worlds with significant accuracy and calibration gains over using only ensembles or data augmentation individually. Applying the correction produces new state-of-the art in uncertainty calibration and robustness across CIFAR-10, CIFAR-100, and ImageNet.
[ Virtual ]

Training on synthetic data can be beneficial for label or data-scarce scenarios. However, synthetically trained models often suffer from poor generalization in real domains due to domain gaps. In this work, we make a key observation that the diversity of the learned feature embeddings plays an important role in the generalization performance. To this end, we propose contrastive synthetic-to-real generalization (CSG), a novel framework that leverage the pre-trained ImageNet knowledge to prevent overfitting to the synthetic domain, while promoting the diversity of feature embeddings as an inductive bias to improve generalization. In addition, we enhance the proposed CSG framework with attentional pooling (A-pool) to let the model focus on semantically important regions and further improve its generalization. We demonstrate the effectiveness of CSG on various synthetic training tasks, exhibiting state-of-the-art performance on zero-shot domain generalization.
[ Virtual ]

Sliced-Wasserstein distance (SW) and its variant, Max Sliced-Wasserstein distance (Max-SW), have been used widely in the recent years due to their fast computation and scalability even when the probability measures lie in a very high dimensional space. However, SW requires many unnecessary projection samples to approximate its value while Max-SW only uses the most important projection, which ignores the information of other useful directions. In order to account for these weaknesses, we propose a novel distance, named Distributional Sliced-Wasserstein distance (DSW), that finds an optimal distribution over projections that can balance between exploring distinctive projecting directions and the informativeness of projections themselves. We show that the DSW is a generalization of Max-SW, and it can be computed efficiently by searching for the optimal push-forward measure over a set of probability measures over the unit sphere satisfying certain regularizing constraints that favor distinct directions. Finally, we conduct extensive experiments with large-scale datasets to demonstrate the favorable performances of the proposed distances over the previous sliced-based distances in generative modeling applications.
[ Virtual ]

[ Virtual ]

Human perception excels at building compositional hierarchies of parts and objects from unlabeled scenes that help systematic generalization. Yet most work on generative scene modeling either ignores the part-whole relationship or assumes access to predefined part labels. In this paper, we propose Generative Scene Graph Networks (GSGNs), the first deep generative model that learns to discover the primitive parts and infer the part-whole relationship jointly from multi-object scenes without supervision and in an end-to-end trainable way. We formulate GSGN as a variational autoencoder in which the latent representation is a tree-structured probabilistic scene graph. The leaf nodes in the latent tree correspond to primitive parts, and the edges represent the symbolic pose variables required for recursively composing the parts into whole objects and then the full scene. This allows novel objects and scenes to be generated both by sampling from the prior and by manual configuration of the pose variables, as we do with graphics engines. We evaluate GSGN on datasets of scenes containing multiple compositional objects, including a challenging Compositional CLEVR dataset that we have developed. We show that GSGN is able to infer the latent scene graph, generalize out of the training regime, and improve data efficiency in …
[ Virtual ]

Federated Learning (FL) is a method of training machine learning models on private data distributed over a large number of possibly heterogeneous clients such as mobile phones and IoT devices. In this work, we propose a new federated learning framework named HeteroFL to address heterogeneous clients equipped with very different computation and communication capabilities. Our solution can enable the training of heterogeneous local models with varying computation complexities and still produce a single global inference model. For the first time, our method challenges the underlying assumption of existing work that local models have to share the same architecture as the global model. We demonstrate several strategies to enhance FL training and conduct extensive empirical evaluations, including five computation complexity levels of three model architecture on three datasets. We show that adaptively distributing subnetworks according to clients' capabilities is both computation and communication efficient.
[ Virtual ]

The recent research in semi-supervised learning (SSL) is mostly dominated by consistency regularization based methods which achieve strong performance. However, they heavily rely on domain-specific data augmentations, which are not easy to generate for all data modalities. Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation. We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models; these predictions generate many incorrect pseudo-labels, leading to noisy training. We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process. Furthermore, UPS generalizes the pseudo-labeling process, allowing for the creation of negative pseudo-labels; these negative pseudo-labels can be used for multi-label classification as well as negative learning to improve the single-label classification. We achieve strong performance when compared to recent SSL methods on the CIFAR-10 and CIFAR-100 datasets. Also, we demonstrate the versatility of our method on the video dataset UCF-101 and the multi-label dataset Pascal VOC.
[ Virtual ]

Numerous task-specific variants of conditional generative adversarial networks have been developed for image completion. Yet, a serious limitation remains that all existing algorithms tend to fail when handling large-scale missing regions. To overcome this challenge, we propose a generic new approach that bridges the gap between image-conditional and recent modulated unconditional generative architectures via co-modulation of both conditional and stochastic style representations. Also, due to the lack of good quantitative metrics for image completion, we propose the new Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the perceptual fidelity of inpainted images compared to real images via linear separability in a feature space. Experiments demonstrate superior performance in terms of both quality and diversity over state-of-the-art methods in free-form image completion and easy generalization to image-to-image translation. Code is available at https://github.com/zsyzzsoft/co-mod-gan.
[ Virtual ]

Communication compression has become a key strategy to speed up distributed optimization. However, existing decentralized algorithms with compression mainly focus on compressing DGD-type algorithms. They are unsatisfactory in terms of convergence rate, stability, and the capability to handle heterogeneous data. Motivated by primal-dual algorithms, this paper proposes the first \underline{L}in\underline{EA}r convergent \underline{D}ecentralized algorithm with compression, LEAD. Our theory describes the coupled dynamics of the inexact primal and dual update as well as compression error, and we provide the first consensus error bound in such settings without assuming bounded gradients. Experiments on convex problems validate our theoretical analysis, and empirical study on deep neural nets shows that LEAD is applicable to non-convex problems.
[ Virtual ]

Searching for novel molecules with desired chemical properties is crucial in drug discovery. Existing work focuses on developing neural models to generate either molecular sequences or chemical graphs. However, it remains a big challenge to find novel and diverse compounds satisfying several properties. In this paper, we propose MARS, a method for multi-objective drug molecule discovery. MARS is based on the idea of generating the chemical candidates by iteratively editing fragments of molecular graphs. To search for high-quality candidates, it employs Markov chain Monte Carlo sampling (MCMC) on molecules with an annealing scheme and an adaptive proposal. To further improve sample efficiency, MARS uses a graph neural network (GNN) to represent and select candidate edits, where the GNN is trained on-the-fly with samples from MCMC. Experiments show that MARS achieves state-of-the-art performance in various multi-objective settings where molecular bio-activity, drug-likeness, and synthesizability are considered. Remarkably, in the most challenging setting where all four objectives are simultaneously optimized, our approach outperforms previous methods significantly in comprehensive evaluations. The code is available at https://github.com/yutxie/mars.
[ Virtual ]

Optimizing molecules for desired properties is a fundamental yet challenging task in chemistry, material science, and drug discovery. This paper develops a novel algorithm for optimizing molecular properties via an Expectation-Maximization (EM) like explainable evolutionary process. The algorithm is designed to mimic human experts in the process of searching for desirable molecules and alternate between two stages: the first stage on explainable local search which identifies rationales, i.e., critical subgraph patterns accounting for desired molecular properties, and the second stage on molecule completion which explores the larger space of molecules containing good rationales. We test our approach against various baselines on a real-world multi-property optimization task where each method is given the same number of queries to the property oracle. We show that our evolution-by-explanation algorithm is 79% better than the best baseline in terms of a generic metric combining aspects such as success rate, novelty, and diversity. Human expert evaluation on optimized molecules shows that 60% of top molecules obtained from our methods are deemed successful.
[ Virtual ]

Regularization has long been utilized to learn sparsity in deep neural network pruning. However, its role is mainly explored in the small penalty strength regime. In this work, we extend its application to a new scenario where the regularization grows large gradually to tackle two central problems of pruning: pruning schedule and weight importance scoring. (1) The former topic is newly brought up in this work, which we find critical to the pruning performance while receives little research attention. Specifically, we propose an L2 regularization variant with rising penalty factors and show it can bring significant accuracy gains compared with its one-shot counterpart, even when the same weights are removed. (2) The growing penalty scheme also brings us an approach to exploit the Hessian information for more accurate pruning without knowing their specific values, thus not bothered by the common Hessian approximation problems. Empirically, the proposed algorithms are easy to implement and scalable to large datasets and networks in both structured and unstructured pruning. Their effectiveness is demonstrated with modern deep neural networks on the CIFAR and ImageNet datasets, achieving competitive results compared to many state-of-the-art algorithms. Our code and trained models are publicly available at https://github.com/mingsun-tse/regularization-pruning.
[ Virtual ]
Off-policy evaluation (OPE) is the task of estimating the expected reward of a given policy based on offline data previously collected under different policies. Therefore, OPE is a key step in applying reinforcement learning to real-world domains such as medical treatment, where interactive data collection is expensive or even unsafe. As the observed data tends to be noisy and limited, it is essential to provide rigorous uncertainty quantification, not just a point estimation, when applying OPE to make high stakes decisions. This work considers the problem of constructing non-asymptotic confidence intervals in infinite-horizon off-policy evaluation, which remains a challenging open question. We develop a practical algorithm through a primal-dual optimization-based approach, which leverages the kernel Bellman loss (KBL) of Feng et al. 2019 and a new martingale concentration inequality of KBL applicable to time-dependent data with unknown mixing conditions. Our algorithm makes minimum assumptions on the data and the function class of the Q-function, and works for the behavior-agnostic settings where the data is collected under a mix of arbitrary unknown behavior policies. We present empirical results that clearly demonstrate the advantages of our approach over existing methods.

Contrastive representation learning has shown to be effective to learn representations from unlabeled data. However, much progress has been made in vision domains relying on data augmentations carefully designed using domain knowledge. In this work, we propose i-Mix, a simple yet effective domain-agnostic regularization strategy for improving contrastive representation learning. We cast contrastive learning as training a non-parametric classifier by assigning a unique virtual class to each data in a batch. Then, data instances are mixed in both the input and virtual label spaces, providing more augmented data during training. In experiments, we demonstrate that i-Mix consistently improves the quality of learned representations across domains, including image, speech, and tabular data. Furthermore, we confirm its regularization effect via extensive ablation studies across model and dataset sizes. The code is available at https://github.com/kibok90/imix.

In this paper we consider reinforcement learning tasks with progressive rewards; that is, tasks where the rewards tend to increase in magnitude over time. We hypothesise that this property may be problematic for value-based deep reinforcement learning agents, particularly if the agent must first succeed in relatively unrewarding regions of the task in order to reach more rewarding regions. To address this issue, we propose Spectral DQN, which decomposes the reward into frequencies such that the high frequencies only activate when large rewards are found. This allows the training loss to be balanced so that it gives more even weighting across small and large reward regions. In two domains with extreme reward progressivity, where standard value-based methods struggle significantly, Spectral DQN is able to make much farther progress. Moreover, when evaluated on a set of six standard Atari games that do not overtly favour the approach, Spectral DQN remains more than competitive: While it underperforms one of the benchmarks in a single game, it comfortably surpasses the benchmarks in three games. These results demonstrate that the approach is not overfit to its target problem, and suggest that Spectral DQN may have advantages beyond addressing reward progressivity.

In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms, for solving inverse problems and beyond. Unrolling is believed to incorporate the model-based prior with the learning capacity of deep learning. This paper revisits \textit{the role of unrolling as a design approach for deep networks}: to what extent its resulting special architecture is superior, and can we find better? Using LISTA for sparse recovery as a representative example, we conduct the first thorough \textit{design space study} for the unrolled models. Among all possible variations, we focus on extensively varying the connectivity patterns and neuron types, leading to a gigantic design space arising from LISTA. To efficiently explore this space and identify top performers, we leverage the emerging tool of neural architecture search (NAS). We carefully examine the searched top architectures in a number of settings, and are able to discover networks that consistently better than LISTA. We further present more visualization and analysis to ``open the black box", and find that the searched top architectures demonstrate highly consistent and potentially transferable patterns. We hope our study to spark more reflections and explorations on how to better mingle model-based optimization prior and data-driven learning.

In this paper, we explore connections between interpretable machine learning and learning theory through the lens of local approximation explanations. First, we tackle the traditional problem of performance generalization and bound the test-time predictive accuracy of a model using a notion of how locally explainable it is. Second, we explore the novel problem of explanation generalization which is an important concern for a growing class of finite sample-based local approximation explanations. Finally, we validate our theoretical results empirically and show that they reflect what can be seen in practice.

We propose a simple and efficient multi-hop dense retrieval approach for answering complex open-domain questions, which achieves state-of-the-art performance on two multi-hop datasets, HotpotQA and multi-evidence FEVER. Contrary to previous work, our method does not require access to any corpus-specific information, such as inter-document hyperlinks or human-annotated entity markers, and can be applied to any unstructured text corpus. Our system also yields a much better efficiency-accuracy trade-off, matching the best published accuracy on HotpotQA while being 10 times faster at inference time.

Adversarial attacks pose a major challenge for modern deep neural networks. Recent advancements show that adversarially robust generalization requires a large amount of labeled data for training. If annotation becomes a burden, can unlabeled data help bridge the gap? In this paper, we propose ARMOURED, an adversarially robust training method based on semi-supervised learning that consists of two components. The first component applies multi-view learning to simultaneously optimize multiple independent networks and utilizes unlabeled data to enforce labeling consistency. The second component reduces adversarial transferability among the networks via diversity regularizers inspired by determinantal point processes and entropy maximization. Experimental results show that under small perturbation budgets, ARMOURED is robust against strong adaptive adversaries. Notably, ARMOURED does not rely on generating adversarial samples during training. When used in combination with adversarial training, ARMOURED yields competitive performance with the state-of-the-art adversarially-robust benchmarks on SVHN and outperforms them on CIFAR-10, while offering higher clean accuracy.

Regularization by denoising (RED) is a recently developed framework for solving inverse problems by integrating advanced denoisers as image priors. Recent work has shown its state-of-the-art performance when combined with pre-trained deep denoisers. However, current RED algorithms are inadequate for parallel processing on multicore systems. We address this issue by proposing a new{asynchronous RED (Async-RED) algorithm that enables asynchronous parallel processing of data, making it significantly faster than its serial counterparts for large-scale inverse problems. The computational complexity of Async-RED is further reduced by using a random subset of measurements at every iteration. We present a complete theoretical analysis of the algorithm by establishing its convergence under explicit assumptions on the data-fidelity and the denoiser. We validate Async-RED on image recovery using pre-trained deep denoisers as priors.

Designing proper loss functions is essential in training deep networks. Especially in the field of semantic segmentation, various evaluation metrics have been proposed for diverse scenarios. Despite the success of the widely adopted cross-entropy loss and its variants, the mis-alignment between the loss functions and evaluation metrics degrades the network performance. Meanwhile, manually designing loss functions for each specific metric requires expertise and significant manpower. In this paper, we propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric. We substitute the non-differentiable operations in the metrics with parameterized functions, and conduct parameter search to optimize the shape of loss surfaces. Two constraints are introduced to regularize the search space and make the search efficient. Extensive experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently. The searched losses can generalize well to other datasets and networks. Code shall be released at https://github.com/fundamentalvision/Auto-Seg-Loss.

To alleviate the resource constraint for real-time point cloud applications that run on edge devices, in this paper we present BiPointNet, the first model binarization approach for efficient deep learning on point clouds. We discover that the immense performance drop of binarized models for point clouds mainly stems from two challenges: aggregation-induced feature homogenization that leads to a degradation of information entropy, and scale distortion that hinders optimization and invalidates scale-sensitive structures. With theoretical justifications and in-depth analysis, our BiPointNet introduces Entropy-Maximizing Aggregation (EMA) to modulate the distribution before aggregation for the maximum information entropy, and Layer-wise Scale Recovery (LSR) to efficiently restore feature representation capacity. Extensive experiments show that BiPointNet outperforms existing binarization methods by convincing margins, at the level even comparable with the full precision counterpart. We highlight that our techniques are generic, guaranteeing significant improvements on various fundamental tasks and mainstream backbones. Moreover, BiPointNet gives an impressive 14.7× speedup and 18.9× storage saving on real-world resource-constrained devices.

Calibrating neural networks is of utmost importance when employing them in safety-critical applications where the downstream decision making depends on the predicted probabilities. Measuring calibration error amounts to comparing two empirical distributions. In this work, we introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test in which the main idea is to compare the respective cumulative probability distributions. From this, by approximating the empirical cumulative distribution using a differentiable function via splines, we obtain a recalibration function, which maps the network outputs to actual (calibrated) class assignment probabilities. The spline-fitting is performed using a held-out calibration set and the obtained recalibration function is evaluated on an unseen test set. We tested our method against existing calibration approaches on various image classification datasets and our spline-based recalibration approach consistently outperforms existing methods on KS error as well as other commonly used calibration measures. Code is available online at https://github.com/kartikgupta-at-anu/spline-calibration.

Clustering is one of the most fundamental tasks in machine learning. Recently, deep clustering has become a major trend in clustering techniques. Representation learning often plays an important role in the effectiveness of deep clustering, and thus can be a principal cause of performance degradation. In this paper, we propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation. Our deep-learning-based representation learning method is motivated by the properties of classical spectral clustering. Instance discrimination learns similarities among data and feature decorrelation removes redundant correlation among features. We utilize an instance discrimination method in which learning individual instance classes leads to learning similarity among instances. Through detailed experiments and examination, we show that the approach can be adapted to learning a latent space for clustering. We design novel softmax-formulated decorrelation constraints for learning. In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively. We also show that the softmax-formulated constraints are compatible with various neural networks.

Graph Neural Networks (GNNs) are a predominant technique for learning over graphs. However, there is relatively little understanding of why GNNs are successful in practice and whether they are necessary for good performance. Here, we show that for many standard transductive node classification benchmarks, we can exceed or match the performance of state-of-the-art GNNs by combining shallow models that ignore the graph structure with two simple post-processing steps that exploit correlation in the label structure: (i) an “error correlation” that spreads residual errors in training data to correct errors in test data and (ii) a “prediction correlation” that smooths the predictions on the test data. We call this overall procedure Correct and Smooth (C&S), and the post-processing steps are implemented via simple modifications to standard label propagation techniques that have long been used in graph-based semi-supervised learning. Our approach exceeds or nearly matches the performance of state-of-the-art GNNs on a wide variety of benchmarks, with just a small fraction of the parameters and orders of magnitude faster runtime. For instance, we exceed the best-known GNN performance on the OGB-Products dataset with 137 times fewer parameters and greater than 100 times less training time. The performance of our methods highlights how …

Neural networks have shown tremendous potential for reconstructing high-resolution images in inverse problems. The non-convex and opaque nature of neural networks, however, hinders their utility in sensitive applications such as medical imaging. To cope with this challenge, this paper advocates a convex duality framework that makes a two-layer fully-convolutional ReLU denoising network amenable to convex optimization. The convex dual network not only offers the optimum training with convex solvers, but also facilitates interpreting training and prediction. In particular, it implies training neural networks with weight decay regularization induces path sparsity while the prediction is piecewise linear filtering. A range of experiments with MNIST and fastMRI datasets confirm the efficacy of the dual network optimization problem.

Low-precision deep neural network (DNN) training has gained tremendous attention as reducing precision is one of the most effective knobs for boosting DNNs' training time/energy efficiency. In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs' precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training. Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the precision between two boundary values which can be identified using a simple precision range test within the first few training epochs. Extensive simulations and ablation studies on five datasets and eleven models demonstrate that CPT's effectiveness is consistent across various models/tasks (including classification and language modeling). Furthermore, through experiments and visualization we show that CPT helps to (1) converge to a wider minima with a lower generalization error and (2) reduce training variance which we believe opens up a new design knob for simultaneously improving the optimization and efficiency of DNN training.

Temporally localizing actions in videos is one of the key components for video understanding. Learning from weakly-labeled data is seen as a potential solution towards avoiding expensive frame-level annotations. Different from other works which only depend on visual-modality, we propose to learn richer audiovisual representation for weakly-supervised action localization. First, we propose a multi-stage cross-attention mechanism to collaboratively fuse audio and visual features, which preserves the intra-modal characteristics. Second, to model both foreground and background frames, we construct an open-max classifier that treats the background class as an open-set. Third, for precise action localization, we design consistency losses to enforce temporal continuity for the action class prediction, and also help with foreground-prediction reliability. Extensive experiments on two publicly available video-datasets (AVE and ActivityNet1.2) show that the proposed method effectively fuses audio and visual modalities, and achieves the state-of-the-art results for weakly-supervised action localization.

3D convolution is powerful for video classification but often computationally expensive, recent studies mainly focus on decomposing it on spatial-temporal and/or channel dimensions. Unfortunately, most approaches fail to achieve a preferable balance between convolutional efficiency and feature-interaction sufficiency. For this reason, we propose a concise and novel Channel Tensorization Network (CT-Net), by treating the channel dimension of input feature as a multiplication of K sub-dimensions. On one hand, it naturally factorizes convolution in a multiple dimension way, leading to a light computation burden. On the other hand, it can effectively enhance feature interaction from different channels, and progressively enlarge the 3D receptive field of such interaction to boost classification accuracy. Furthermore, we equip our CT-Module with a Tensor Excitation (TE) mechanism. It can learn to exploit spatial, temporal and channel attention in a high-dimensional manner, to improve the cooperative power of all the feature dimensions in our CT-Module. Finally, we flexibly adapt ResNet as our CT-Net. Extensive experiments are conducted on several challenging video benchmarks, e.g., Kinetics-400, Something-Something V1 and V2. Our CT-Net outperforms a number of recent SOTA approaches, in terms of accuracy and/or efficiency.

Recently, the DL compiler, together with Learning to Compile has proven to be a powerful technique for optimizing deep learning models. However, existing methods focus on accelerating the convergence speed of the individual tensor operator rather than the convergence speed of the entire model, which results in long optimization time to obtain a desired latency.
In this paper, we present a new method called DynaTune, which provides significantly faster convergence speed to optimize a DNN model. In particular, we consider a Multi-Armed Bandit (MAB) model for the tensor program optimization problem. We use UCB to handle the decision-making of time-slot-based optimization, and we devise a Bayesian belief model that allows predicting the potential performance gain of each operator with uncertainty quantification, which guides the optimization process. We evaluate and compare DynaTune with the state-of-the-art DL compiler. The experiment results show that DynaTune is 1.2--2.4 times faster to achieve the same optimization quality for a range of models across different hardware architectures.

Predictive uncertainty estimation is an essential next step for the reliable deployment of deep object detectors in safety-critical tasks. In this work, we focus on estimating predictive distributions for bounding box regression output with variance networks. We show that in the context of object detection, training variance networks with negative log likelihood (NLL) can lead to high entropy predictive distributions regardless of the correctness of the output mean. We propose to use the energy score as a non-local proper scoring rule and find that when used for training, the energy score leads to better calibrated and lower entropy predictive distributions than NLL. We also address the widespread use of non-proper scoring metrics for evaluating predictive distributions from deep object detectors by proposing an alternate evaluation approach founded on proper scoring rules. Using the proposed evaluation tools, we show that although variance networks can be used to produce high quality predictive distributions, ad-hoc approaches used by seminal object detectors for choosing regression targets during training do not provide wide enough data support for reliable variance learning. We hope that our work helps shift evaluation in probabilistic object detection to better align with predictive uncertainty evaluation in other machine learning domains. Code …

Explaining the predictions made by complex machine learning models helps users to understand and accept the predicted outputs with confidence. One promising way is to use similarity-based explanation that provides similar instances as evidence to support model predictions. Several relevance metrics are used for this purpose. In this study, we investigated relevance metrics that can provide reasonable explanations to users. Specifically, we adopted three tests to evaluate whether the relevance metrics satisfy the minimal requirements for similarity-based explanation. Our experiments revealed that the cosine similarity of the gradients of the loss performs best, which would be a recommended choice in practice. In addition, we showed that some metrics perform poorly in our tests and analyzed the reasons of their failure. We expect our insights to help practitioners in selecting appropriate relevance metrics and also aid further researches for designing better relevance metrics for explanations.

We construct an experimental setup in which changing the scale of initialization strongly impacts the implicit regularization induced by SGD, interpolating from good generalization performance to completely memorizing the training set while making little progress on the test set. Moreover, we find that the extent and manner in which generalization ability is affected depends on the activation and loss function used, with sin activation being the most extreme. In the case of the homogeneous ReLU activation, we show that this behavior can be attributed to the loss function. Our empirical investigation reveals that increasing the scale of initialization correlates with misalignment of representations and gradients across examples in the same class. This insight allows us to device an alignment measure over gradients and representations which can capture this phenomenon. We demonstrate that our alignment measure correlates with generalization of deep models trained on image classification tasks.

Modeling a structured, dynamic environment like a video game requires keeping track of the objects and their states (declarative knowledge) as well as predicting how objects behave (procedural knowledge). Black-box models with a monolithic hidden state often fail to apply procedural knowledge consistently and uniformly, i.e., they lack systematicity. For example, in a video game, correct prediction of one enemy's trajectory does not ensure correct prediction of another's. We address this issue via an architecture that factorizes declarative and procedural knowledge and that imposes modularity within each form of knowledge. The architecture consists of active modules called object files that maintain the state of a single object and invoke passive external knowledge sources called schemata that prescribe state updates. To use a video game as an illustration, two enemies of the same type will share schemata but will have separate object files to encode their distinct state (e.g., health, position). We propose to use attention to determine which object files to update, the selection of schemata, and the propagation of information between object files. The resulting architecture is a drop-in replacement conforming to the same input-output interface as normal recurrent networks (e.g., LSTM, GRU) yet achieves substantially better generalization on …

Formal verification of neural networks (NNs) is a challenging and important problem. Existing efficient complete solvers typically require the branch-and-bound (BaB) process, which splits the problem domain into sub-domains and solves each sub-domain using faster but weaker incomplete verifiers, such as Linear Programming (LP) on linearly relaxed sub-domains. In this paper, we propose to use the backward mode linear relaxation based perturbation analysis (LiRPA) to replace LP during the BaB process, which can be efficiently implemented on the typical machine learning accelerators such as GPUs and TPUs. However, unlike LP, LiRPA when applied naively can produce much weaker bounds and even cannot check certain conflicts of sub-domains during splitting, making the entire procedure incomplete after BaB. To address these challenges, we apply a fast gradient based bound tightening procedure combined with batch splits and the design of minimal usage of LP bound procedure, enabling us to effectively use LiRPA on the accelerator hardware for the challenging complete NN verification problem and significantly outperform LP-based approaches. On a single GPU, we demonstrate an order of magnitude speedup compared to existing LP-based approaches.


Non-autoregressive text to speech (TTS) models such as FastSpeech can synthesize speech significantly faster than previous autoregressive models with comparable quality. The training of FastSpeech model relies on an autoregressive teacher model for duration prediction (to provide more information as input) and knowledge distillation (to simplify the data distribution in output), which can ease the one-to-many mapping problem (i.e., multiple speech variations correspond to the same text) in TTS. However, FastSpeech has several disadvantages: 1) the teacher-student distillation pipeline is complicated and time-consuming, 2) the duration extracted from the teacher model is not accurate enough, and the target mel-spectrograms distilled from teacher model suffer from information loss due to data simplification, both of which limit the voice quality. In this paper, we propose FastSpeech 2, which addresses the issues in FastSpeech and better solves the one-to-many mapping problem in TTS by 1) directly training the model with ground-truth target instead of the simplified output from teacher, and 2) introducing more variation information of speech (e.g., pitch, energy and more accurate duration) as conditional inputs. Specifically, we extract duration, pitch and energy from speech waveform and directly take them as conditional inputs in training and use predicted values in inference. We …

The emerging paradigm of federated learning (FL) strives to enable collaborative training of deep models on the network edge without centrally aggregating raw data and hence improving data privacy. In most cases, the assumption of independent and identically distributed samples across local clients does not hold for federated learning setups. Under this setting, neural network training performance may vary significantly according to the data distribution and even hurt training convergence. Most of the previous work has focused on a difference in the distribution of labels or client shifts. Unlike those settings, we address an important problem of FL, e.g., different scanners/sensors in medical imaging, different scenery distribution in autonomous driving (highway vs. city), where local clients store examples with different distributions compared to other clients, which we denote as feature shift non-iid. In this work, we propose an effective method that uses local batch normalization to alleviate the feature shift before averaging models. The resulting scheme, called FedBN, outperforms both classical FedAvg, as well as the state-of-the-art for non-iid data (FedProx) on our extensive experiments. These empirical results are supported by a convergence analysis that shows in a simplified setting that FedBN has a faster convergence rate than FedAvg. Code …

Deep Learning based methods have emerged as the indisputable leaders for virtually all image restoration tasks. Especially in the domain of microscopy images, various content-aware image restoration (CARE) approaches are now used to improve the interpretability of acquired data. Naturally, there are limitations to what can be restored in corrupted images, and like for all inverse problems, many potential solutions exist, and one of them must be chosen. Here, we propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs), overcoming the problem of having to choose a single solution by predicting a whole distribution of denoised images. First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder. Our approach is fully unsupervised, only requiring noisy images and a suitable description of the imaging noise distribution. We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training. If desired, consensus predictions can be inferred from a set of DivNoising predictions, leading to competitive results with other unsupervised methods and, on occasion, even with the supervised state-of-the-art. DivNoising samples from the posterior enable a plethora of …

We tackle a challenging blind image denoising problem, in which only single distinct noisy images are available for training a denoiser, and no information about noise is known, except for it being zero-mean, additive, and independent of the clean image. In such a setting, which often occurs in practice, it is not possible to train a denoiser with the standard discriminative training or with the recently developed Noise2Noise (N2N) training; the former requires the underlying clean image for the given noisy image, and the latter requires two independently realized noisy image pair for a clean image. To that end, we propose GAN2GAN (Generated-Artificial-Noise to Generated-Artificial-Noise) method that first learns a generative model that can 1) simulate the noise in the given noisy images and 2) generate a rough, noisy estimates of the clean images, then 3) iteratively trains a denoiser with subsequently synthesized noisy image pairs (as in N2N), obtained from the generative model. In results, we show the denoiser trained with our GAN2GAN achieves an impressive denoising performance on both synthetic and real-world datasets for the blind denoising setting; it almost approaches the performance of the standard discriminatively-trained or N2N-trained models that have more information than ours, and it …

This paper theoretically investigates the following empirical phenomenon: given a high-complexity network with poor generalization bounds, one can distill it into a network with nearly identical predictions but low complexity and vastly smaller generalization bounds. The main contribution is an analysis showing that the original network inherits this good generalization bound from its distillation, assuming the use of well-behaved data augmentation. This bound is presented both in an abstract and in a concrete form, the latter complemented by a reduction technique to handle modern computation graphs featuring convolutional layers, fully-connected layers, and skip connections, to name a few. To round out the story, a (looser) classical uniform convergence analysis of compression is also presented, as well as a variety of experiments on cifar and mnist demonstrating similar generalization performance between the original network and its distillation.

In the mean field regime, neural networks are appropriately scaled so that as the width tends to infinity, the learning dynamics tends to a nonlinear and nontrivial dynamical limit, known as the mean field limit. This lends a way to study large-width neural networks via analyzing the mean field limit. Recent works have successfully applied such analysis to two-layer networks and provided global convergence guarantees. The extension to multilayer ones however has been a highly challenging puzzle, and little is known about the optimization efficiency in the mean field regime when there are more than two layers.
In this work, we prove a global convergence result for unregularized feedforward three-layer networks in the mean field regime. We first develop a rigorous framework to establish the mean field limit of three-layer networks under stochastic gradient descent training. To that end, we propose the idea of a neuronal embedding, which comprises of a fixed probability space that encapsulates neural networks of arbitrary sizes. The identified mean field limit is then used to prove a global convergence guarantee under suitable regularity and convergence mode assumptions, which – unlike previous works on two-layer networks – does not rely critically on convexity. Underlying the result …


Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augmentations via additional regularizers in the GAN objective and thus spend valuable network capacity towards approximating transformation equivariance instead of their desired task. In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks. Group-convolutions have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator. We show that group-equivariance integrates seamlessly with recent techniques for GAN training across regularizers, architectures, and loss functions. We demonstrate the utility of our methods for conditional synthesis by improving generation in the limited data regime across symmetric imaging datasets and even find benefits for natural images with preferred orientation.

Real-world large-scale datasets are heteroskedastic and imbalanced --- labels have varying levels of uncertainty and label distributions are long-tailed. Heteroskedasticity and imbalance challenge deep learning algorithms due to the difficulty of distinguishing among mislabeled, ambiguous, and rare examples. Addressing heteroskedasticity and imbalance simultaneously is under-explored. We propose a data-dependent regularization technique for heteroskedastic datasets that regularizes different regions of the input space differently. Inspired by the theoretical derivation of the optimal regularization strength in a one-dimensional nonparametric classification setting, our approach adaptively regularizes the data points in higher-uncertainty, lower-density regions more heavily. We test our method on several benchmark tasks, including a real-world heteroskedastic and imbalanced dataset, WebVision. Our experiments corroborate our theory and demonstrate a significant improvement over other methods in noise-robust deep learning.


HardWare-aware Neural Architecture Search (HW-NAS) has recently gained tremendous attention by automating the design of deep neural networks deployed in more resource-constrained daily life devices. Despite its promising performance, developing optimal HW-NAS solutions can be prohibitively challenging as it requires cross-disciplinary knowledge in the algorithm, micro-architecture, and device-specific compilation. First, to determine the hardware-cost to be incorporated into the NAS process, existing works mostly adopt either pre-collected hardware-cost look-up tables or device-specific hardware-cost models. The former can be time-consuming due to the required knowledge of the device’s compilation method and how to set up the measurement pipeline, while building the latter is often a barrier for non-hardware experts like NAS researchers. Both of them limit the development of HW-NAS innovations and impose a barrier-to-entry to non-hardware experts. Second, similar to generic NAS, it can be notoriously difficult to benchmark HW-NAS algorithms due to their significant required computational resources and the differences in adopted search spaces, hyperparameters, and hardware devices. To this end, we develop HW-NAS-Bench, the first public dataset for HW-NAS research which aims to democratize HW-NAS research to non-hardware experts and make HW-NAS research more reproducible and accessible. To design HW-NAS-Bench, we carefully collected the measured/estimated hardware performance (e.g., …

The geometric properties of contextual embedding spaces for deep language models such as BERT and ERNIE, have attracted considerable attention in recent years. Investigations on the contextual embeddings demonstrate a strong anisotropic space such that most of the vectors fall within a narrow cone, leading to high cosine similarities. It is surprising that these LMs are as successful as they are, given that most of their embedding vectors are as similar to one another as they are. In this paper, we argue that the isotropy indeed exists in the space, from a different but more constructive perspective. We identify isolated clusters and low dimensional manifolds in the contextual embedding space, and introduce tools to both qualitatively and quantitatively analyze them. We hope the study in this paper could provide insights towards a better understanding of the deep language models.


Although much progress has been made towards robust deep learning, a significant gap in robustness remains between real-world perturbations and more narrowly defined sets typically studied in adversarial defenses. In this paper, we aim to bridge this gap by learning perturbation sets from data, in order to characterize real-world effects for robust training and evaluation. Specifically, we use a conditional generator that defines the perturbation set over a constrained region of the latent space. We formulate desirable properties that measure the quality of a learned perturbation set, and theoretically prove that a conditional variational autoencoder naturally satisfies these criteria. Using this framework, our approach can generate a variety of perturbations at different complexities and scales, ranging from baseline spatial transformations, through common image corruptions, to lighting variations. We measure the quality of our learned perturbation sets both quantitatively and qualitatively, finding that our models are capable of producing a diverse set of meaningful perturbations beyond the limited data seen during training. Finally, we leverage our learned perturbation sets to train models which are empirically and certifiably robust to adversarial image corruptions and adversarial lighting variations, while improving generalization on non-adversarial data. All code and configuration files for reproducing the experiments …

Many sequential decision making tasks can be viewed as combinatorial optimization problems over a large number of actions. When the cost of evaluating an action is high, even a greedy algorithm, which iteratively picks the best action given the history, is prohibitive to run. In this paper, we aim to learn a greedy heuristic for sequentially selecting actions as a surrogate for invoking the expensive oracle when evaluating an action. In particular, we focus on a class of combinatorial problems that can be solved via submodular maximization (either directly on the objective function or via submodular surrogates). We introduce a data-driven optimization framework based on the submodular-norm loss, a novel loss function that encourages the resulting objective to exhibit diminishing returns. Our framework outputs a surrogate objective that is efficient to train, approximately submodular, and can be made permutation-invariant. The latter two properties allow us to prove strong approximation guarantees for the learned greedy heuristic. Furthermore, we show that our model can be easily integrated with modern deep imitation learning pipelines for sequential prediction tasks. We demonstrate the performance of our algorithm on a variety of batched and sequential optimization tasks, including set cover, active learning, and Bayesian optimization for …

Experience replay, which enables the agents to remember and reuse experience from the past, has played a significant role in the success of off-policy reinforcement learning (RL). To utilize the experience replay efficiently, the existing sampling methods allow selecting out more meaningful experiences by imposing priorities on them based on certain metrics (e.g. TD-error). However, they may result in sampling highly biased, redundant transitions since they compute the sampling rate for each transition independently, without consideration of its importance in relation to other transitions. In this paper, we aim to address the issue by proposing a new learning-based sampling method that can compute the relative importance of transition. To this end, we design a novel permutation-equivariant neural architecture that takes contexts from not only features of each transition (local) but also those of others (global) as inputs. We validate our framework, which we refer to as Neural Experience Replay Sampler (NERS), on multiple benchmark tasks for both continuous and discrete control tasks and show that it can significantly improve the performance of various off-policy RL methods. Further analysis confirms that the improvements of the sample efficiency indeed are due to sampling diverse and meaningful transitions by NERS that considers both …

Natural data are often long-tail distributed over semantic classes. Existing recognition methods tend to focus on gaining performance on tail classes, often at the expense of losing performance on head classes and with increased classifier variance. The low tail performance manifests itself in large inter-class confusion and high classifier variance. We aim to reduce both the bias and the variance of a long-tailed classifier by RoutIng Diverse Experts (RIDE), consisting of three components: 1) a shared architecture for multiple classifiers (experts); 2) a distribution-aware diversity loss that encourages more diverse decisions for classes with fewer training instances; and 3) an expert routing module that dynamically assigns more ambiguous instances to additional experts. With on-par computational complexity, RIDE significantly outperforms the state-of-the-art methods by 5% to 7% on all the benchmarks including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018. RIDE is also a universal framework that can be applied to different backbone networks and integrated into various long-tailed algorithms and training mechanisms for consistent performance gains. Our code is publicly available at https://github.com/frank-xwang/RIDE-LongTailRecognition.

Facial recognition systems are increasingly deployed by private corporations, government agencies, and contractors for consumer services and mass surveillance programs alike. These systems are typically built by scraping social media profiles for user images. Adversarial perturbations have been proposed for bypassing facial recognition systems. However, existing methods fail on full-scale systems and commercial APIs. We develop our own adversarial filter that accounts for the entire image processing pipeline and is demonstrably effective against industrial-grade pipelines that include face detection and large scale databases. Additionally, we release an easy-to-use webtool that significantly degrades the accuracy of Amazon Rekognition and the Microsoft Azure Face Recognition API, reducing the accuracy of each to below 1%.


Recently, Frankle & Carbin (2019) demonstrated that randomly-initialized dense networks contain subnetworks that once found can be trained to reach test accuracy comparable to the trained dense network. However, finding these high performing trainable subnetworks is expensive, requiring iterative process of training and pruning weights. In this paper, we propose (and prove) a stronger Multi-Prize Lottery Ticket Hypothesis:
A sufficiently over-parameterized neural network with random weights contains several subnetworks (winning tickets) that (a) have comparable accuracy to a dense target network with learned weights (prize 1), (b) do not require any further training to achieve prize 1 (prize 2), and (c) is robust to extreme forms of quantization (i.e., binary weights and/or activation) (prize 3).
This provides a new paradigm for learning compact yet highly accurate binary neural networks simply by pruning and quantizing randomly weighted full precision neural networks. We also propose an algorithm for finding multi-prize tickets (MPTs) and test it by performing a series of experiments on CIFAR-10 and ImageNet datasets. Empirical results indicate that as models grow deeper and wider, multi-prize tickets start to reach similar (and sometimes even higher) test accuracy compared to their significantly larger and full-precision counterparts that have been weight-trained. Without ever …

Language models must capture statistical dependencies between words at timescales ranging from very short to very long. Earlier work has demonstrated that dependencies in natural language tend to decay with distance between words according to a power law. However, it is unclear how this knowledge can be used for analyzing or designing neural network language models. In this work, we derived a theory for how the memory gating mechanism in long short-term memory (LSTM) language models can capture power law decay. We found that unit timescales within an LSTM, which are determined by the forget gate bias, should follow an Inverse Gamma distribution. Experiments then showed that LSTM language models trained on natural English text learn to approximate this theoretical distribution. Further, we found that explicitly imposing the theoretical distribution upon the model during training yielded better language model perplexity overall, with particular improvements for predicting low-frequency (rare) words. Moreover, the explicit multi-timescale model selectively routes information about different types of words through units with different timescales, potentially improving model interpretability. These results demonstrate the importance of careful, theoretically-motivated analysis of memory and timescale in language models.

Our work is concerned with the generation and targeted design of RNA, a type of genetic macromolecule that can adopt complex structures which influence their cellular activities and functions. The design of large scale and complex biological structures spurs dedicated graph-based deep generative modeling techniques, which represents a key but underappreciated aspect of computational drug discovery. In this work, we investigate the principles behind representing and generating different RNA structural modalities, and propose a flexible framework to jointly embed and generate these molecular structures along with their sequence in a meaningful latent space. Equipped with a deep understanding of RNA molecular structures, our most sophisticated encoding and decoding methods operate on the molecular graph as well as the junction tree hierarchy, integrating strong inductive bias about RNA structural regularity and folding mechanism such that high structural validity, stability and diversity of generated RNAs are achieved. Also, we seek to adequately organize the latent space of RNA molecular embeddings with regard to the interaction with proteins, and targeted optimization is used to navigate in this latent space to search for desired novel RNA molecules.


Energy-Based Models (EBMs) present a flexible and appealing way to represent uncertainty. Despite recent advances, training EBMs on high-dimensional data remains a challenging problem as the state-of-the-art approaches are costly, unstable, and require considerable tuning and domain expertise to apply successfully. In this work, we present a simple method for training EBMs at scale which uses an entropy-regularized generator to amortize the MCMC sampling typically used in EBM training. We improve upon prior MCMC-based entropy regularization methods with a fast variational approximation. We demonstrate the effectiveness of our approach by using it to train tractable likelihood models. Next, we apply our estimator to the recently proposed Joint Energy Model (JEM), where we match the original performance with faster and stable training. This allows us to extend JEM models to semi-supervised classification on tabular data from a variety of continuous domains.

Predicting the behaviors of Hamiltonian systems has been drawing increasing attention in scientific machine learning. However, the vast majority of the literature was focused on predicting separable Hamiltonian systems with their kinematic and potential energy terms being explicitly decoupled, while building data-driven paradigms to predict nonseparable Hamiltonian systems that are ubiquitous in fluid dynamics and quantum mechanics were rarely explored. The main computational challenge lies in the effective embedding of symplectic priors to describe the inherently coupled evolution of position and momentum, which typically exhibits intricate dynamics. To solve the problem, we propose a novel neural network architecture, Nonseparable Symplectic Neural Networks (NSSNNs), to uncover and embed the symplectic structure of a nonseparable Hamiltonian system from limited observation data. The enabling mechanics of our approach is an augmented symplectic time integrator to decouple the position and momentum energy terms and facilitate their evolution. We demonstrated the efficacy and versatility of our method by predicting a wide range of Hamiltonian systems, both separable and nonseparable, including chaotic vortical flows. We showed the unique computational merits of our approach to yield long-term, accurate, and robust predictions for large-scale Hamiltonian systems by rigorously enforcing symplectomorphism.

We study the approximation properties and optimization dynamics of recurrent neural networks (RNNs) when applied to learn input-output relationships in temporal data. We consider the simple but representative setting of using continuous-time linear RNNs to learn from data generated by linear relationships. Mathematically, the latter can be understood as a sequence of linear functionals. We prove a universal approximation theorem of such linear functionals and characterize the approximation rate. Moreover, we perform a fine-grained dynamical analysis of training linear RNNs by gradient methods. A unifying theme uncovered is the non-trivial effect of memory, a notion that can be made precise in our framework, on both approximation and optimization: when there is long-term memory in the target, it takes a large number of neurons to approximate it. Moreover, the training process will suffer from slow downs. In particular, both of these effects become exponentially more pronounced with increasing memory - a phenomenon we call the “curse of memory”. These analyses represent a basic step towards a concrete mathematical understanding of new phenomenons that may arise in learning temporal relationships using recurrent architectures.

Recognizing relations between entities is a pivotal task of relational learning.
Learning relation representations from distantly-labeled datasets is difficult because of the abundant label noise and complicated expressions in human language.
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data that are effective in different settings, including supervised, distantly supervised, and few-shot learning.
Instead of solely relying on the supervision from noisy labels, we propose to learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Prototypes are representations in the feature space abstracting the essential semantics of relations between entities in sentences.
We learn prototypes based on objectives with clear geometric interpretation, where the prototypes are unit vectors uniformly dispersed in a unit ball, and statement embeddings are centered at the end of their corresponding prototype vectors on the surface of the ball.
This approach allows us to learn meaningful, interpretable prototypes for the final classification.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art models.
We further demonstrate the robustness of the encoder and the interpretability of prototypes with extensive experiments.

The successes of deep learning, variational inference, and many other fields have been aided by specialized implementations of reverse-mode automatic differentiation (AD) to compute gradients of mega-dimensional objectives. The AD techniques underlying these tools were designed to compute exact gradients to numerical precision, but modern machine learning models are almost always trained with stochastic gradient descent. Why spend computation and memory on exact (minibatch) gradients only to use them for stochastic optimization? We develop a general framework and approach for randomized automatic differentiation (RAD), which can allow unbiased gradient estimates to be computed with reduced memory in return for variance. We examine limitations of the general approach, and argue that we must leverage problem specific structure to realize benefits. We develop RAD techniques for a variety of simple neural network architectures, and show that for a fixed memory budget, RAD converges in fewer iterations than using a small batch size for feedforward networks, and in a similar number for recurrent networks. We also show that RAD can be applied to scientific computing, and use it to develop a low-memory stochastic gradient method for optimizing the control parameters of a linear reaction-diffusion PDE representing a fission reactor.

Synthesizing programs from examples requires searching over a vast, combinatorial space of possible programs. In this search process, a key challenge is representing the behavior of a partially written program before it can be executed, to judge if it is on the right track and predict where to search next. We introduce a general technique for representing partially written programs in a program synthesis engine. We take inspiration from the technique of abstract interpretation, in which an approximate execution model is used to determine if an unfinished program will eventually satisfy a goal specification. Here we learn an approximate execution model implemented as a modular neural network. By constructing compositional program representations that implicitly encode the interpretation semantics of the underlying programming language, we can represent partial programs using a flexible combination of concrete execution state and learned neural representations, using the learned approximate semantics when concrete semantics are not known (in unfinished parts of the program). We show that these hybrid neuro-symbolic representations enable execution-guided synthesizers to use more powerful language constructs, such as loops and higher-order functions, and can be used to synthesize programs more accurately for a given search budget than pure neural approaches in several domains.

As a subset of unsupervised representation learning, self-supervised representation learning adopts self-defined signals as supervision and uses the learned representation for downstream tasks, such as object detection and image captioning. Many proposed approaches for self-supervised learning follow naturally a multi-view perspective, where the input (e.g., original images) and the self-supervised signals (e.g., augmented images) can be seen as two redundant views of the data. Building from this multi-view perspective, this paper provides an information-theoretical framework to better understand the properties that encourage successful self-supervised learning. Specifically, we demonstrate that self-supervised learned representations can extract task-relevant information and discard task-irrelevant information. Our theoretical framework paves the way to a larger space of self-supervised learning objective design. In particular, we propose a composite objective that bridges the gap between prior contrastive and predictive learning objectives, and introduce an additional objective term to discard task-irrelevant information. To verify our analysis, we conduct controlled experiments to evaluate the impact of the composite objectives. We also explore our framework's empirical generalization beyond the multi-view perspective, where the cross-view redundancy may not be clearly observed.

This paper introduces Relative Predictive Coding (RPC), a new contrastive representation learning objective that maintains a good balance among training stability, minibatch size sensitivity, and downstream task performance. The key to the success of RPC is two-fold. First, RPC introduces the relative parameters to regularize the objective for boundedness and low variance. Second, RPC contains no logarithm and exponential score functions, which are the main cause of training instability in prior contrastive objectives. We empirically verify the effectiveness of RPC on benchmark vision and speech self-supervised learning tasks. Lastly, we relate RPC with mutual information (MI) estimation, showing RPC can be used to estimate MI with low variance.

The vulnerability of deep networks to adversarial attacks is a central problem for deep learning from the perspective of both cognition and security. The current most successful defense method is to train a classifier using adversarial images created during learning. Another defense approach involves transformation or purification of the original input to remove adversarial signals before the image is classified. We focus on defending naturally-trained classifiers using Markov Chain Monte Carlo (MCMC) sampling with an Energy-Based Model (EBM) for adversarial purification. In contrast to adversarial training, our approach is intended to secure highly vulnerable pre-existing classifiers. To our knowledge, no prior defensive transformation is capable of securing naturally-trained classifiers, and our method is the first to validate a post-training defense approach that is distinct from current successful defenses which modify classifier training.
The memoryless behavior of long-run MCMC sampling will eventually remove adversarial signals, while metastable behavior preserves consistent appearance of MCMC samples after many steps to allow accurate long-run prediction. Balancing these factors can lead to effective purification and robust classification. We evaluate adversarial defense with an EBM using the strongest known attacks against purification. Our contributions are 1) an improved method for training EBM's with realistic long-run MCMC …

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic “expansion” assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.

The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN architecture remains to be kernelized, namely, the recurrent neural network (RNN). In this paper we introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs. A key property of the RNTK should greatly benefit practitioners is its ability to compare inputs of different length. To this end, we characterize how the RNTK weights different time steps to form its output under different initialization parameters and nonlinearity choices. A synthetic and 56 real-world data experiments demonstrate that the RNTK offers significant performance gains over other kernels, including standard NTKs, across a wide array of data sets.

Inspired by human learning, researchers have proposed ordering examples during training based on their difficulty. Both curriculum learning, exposing a network to easier examples early in training, and anti-curriculum learning, showing the most difficult examples first, have been suggested as improvements to the standard i.i.d. training. In this work, we set out to investigate the relative benefits of ordered learning. We first investigate the implicit curricula resulting from architectural and optimization bias and find that samples are learned in a highly consistent order. Next, to quantify the benefit of explicit curricula, we conduct extensive experiments over thousands of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random-curriculum -- in which the size of the training dataset is dynamically increased over time, but the examples are randomly ordered. We find that for standard benchmark datasets, curricula have only marginal benefits, and that randomly ordered samples perform as well or better than curricula and anti-curricula, suggesting that any benefit is entirely due to the dynamic training set size. Inspired by common use cases of curriculum learning in practice, we investigate the role of limited training time budget and noisy data in the success of curriculum learning. Our experiments demonstrate that curriculum, …
Oral Session 12 Fri 7 May 04:00 a.m.

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic “expansion” assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.

Natural data are often long-tail distributed over semantic classes. Existing recognition methods tend to focus on gaining performance on tail classes, often at the expense of losing performance on head classes and with increased classifier variance. The low tail performance manifests itself in large inter-class confusion and high classifier variance. We aim to reduce both the bias and the variance of a long-tailed classifier by RoutIng Diverse Experts (RIDE), consisting of three components: 1) a shared architecture for multiple classifiers (experts); 2) a distribution-aware diversity loss that encourages more diverse decisions for classes with fewer training instances; and 3) an expert routing module that dynamically assigns more ambiguous instances to additional experts. With on-par computational complexity, RIDE significantly outperforms the state-of-the-art methods by 5% to 7% on all the benchmarks including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018. RIDE is also a universal framework that can be applied to different backbone networks and integrated into various long-tailed algorithms and training mechanisms for consistent performance gains. Our code is publicly available at https://github.com/frank-xwang/RIDE-LongTailRecognition.

In most real world scenarios, a policy trained by reinforcement learning in one environment needs to be deployed in another, potentially quite different environment. However, generalization across different environments is known to be hard. A natural solution would be to keep training after deployment in the new environment, but this cannot be done if the new environment offers no reward signal. Our work explores the use of self-supervision to allow the policy to continue training after deployment without using any rewards. While previous methods explicitly anticipate changes in the new environment, we assume no prior knowledge of those changes yet still obtain significant improvements. Empirical evaluations are performed on diverse simulation environments from DeepMind Control suite and ViZDoom, as well as real robotic manipulation tasks in continuously changing environments, taking observations from an uncalibrated camera. Our method improves generalization in 31 out of 36 environments across various tasks and outperforms domain randomization on a majority of environments. Webpage and implementation: https://nicklashansen.github.io/PAD/.
Offline reinforcement learning seeks to utilize offline (observational) data to guide the learning of (causal) sequential decision making strategies. The hope is that offline reinforcement learning coupled with function approximation methods (to deal with the curse of dimensionality) can provide a means to help alleviate the excessive sample complexity burden in modern sequential decision making problems. However, the extent to which this broader approach can be effective is not well understood, where the literature largely consists of sufficient conditions.
This work focuses on the basic question of what are necessary representational and distributional conditions that permit provable sample-efficient offline reinforcement learning. Perhaps surprisingly, our main result shows that even if: i) we have realizability in that the true value function of \emph{every} policy is linear in a given set of features and 2) our off-policy data has good coverage over all features (under a strong spectral condition), any algorithm still (information-theoretically) requires a number of offline samples that is exponential in the problem horizon to non-trivially estimate the value of \emph{any} given policy. Our results highlight that sample-efficient offline policy evaluation is not possible unless significantly stronger conditions hold; such conditions include either having low distribution shift (where the offline …


Image and video synthesis are closely related areas aiming at generating content from noise. While rapid progress has been demonstrated in improving image-based models to handle large resolutions, high-quality renderings, and wide variations in image content, achieving comparable video generation results remains problematic. We present a framework that leverages contemporary image generators to render high-resolution videos. We frame the video synthesis problem as discovering a trajectory in the latent space of a pre-trained and fixed image generator. Not only does such a framework render high-resolution videos, but it also is an order of magnitude more computationally efficient. We introduce a motion generator that discovers the desired trajectory, in which content and motion are disentangled. With such a representation, our framework allows for a broad range of applications, including content and motion manipulation. Furthermore, we introduce a new task, which we call cross-domain video synthesis, in which the image and motion generators are trained on disjoint datasets belonging to different domains. This allows for generating moving objects for which the desired video data is not available. Extensive experiments on various datasets demonstrate the advantages of our methods over existing video generation techniques. Code will be released at https://github.com/snap-research/MoCoGAN-HD.

Transformers are state-of-the-art models for a variety of sequence modeling tasks. At their core is an attention function which models pairwise interactions between the inputs at every timestep. While attention is powerful, it does not scale efficiently to long sequences due to its quadratic time and space complexity in the sequence length. We propose RFA, a linear time and space attention that uses random feature methods to approximate the softmax function, and explore its application in transformers. RFA can be used as a drop-in replacement for conventional softmax attention and offers a straightforward way of learning with recency bias through an optional gating mechanism. Experiments on language modeling and machine translation demonstrate that RFA achieves similar or better performance compared to strong transformer baselines. In the machine translation experiment, RFA decodes twice as fast as a vanilla transformer. Compared to existing efficient transformer variants, RFA is competitive in terms of both accuracy and efficiency on three long text classification datasets. Our analysis shows that RFA’s efficiency gains are especially notable on long sequences, suggesting that RFA will be particularly useful in tasks that require working with large inputs, fast decoding speed, or low memory footprints.

Label noise is frequently observed in real-world large-scale datasets. The noise is introduced due to a variety of reasons; it is heterogeneous and feature-dependent. Most existing approaches to handling noisy labels fall into two categories: they either assume an ideal feature-independent noise, or remain heuristic without theoretical guarantees. In this paper, we propose to target a new family of feature-dependent label noise, which is much more general than commonly used i.i.d. label noise and encompasses a broad spectrum of noise patterns. Focusing on this general noise family, we propose a progressive label correction algorithm that iteratively corrects labels and refines the model. We provide theoretical guarantees showing that for a wide variety of (unknown) noise patterns, a classifier trained with this strategy converges to be consistent with the Bayes classifier. In experiments, our method outperforms SOTA baselines and is robust to various noise types and levels.

Given a large data matrix, sparsifying, quantizing, and/or performing other entry-wise nonlinear operations can have numerous benefits, ranging from speeding up iterative algorithms for core numerical linear algebra problems to providing nonlinear filters to design state-of-the-art neural network models. Here, we exploit tools from random matrix theory to make precise statements about how the eigenspectrum of a matrix changes under such nonlinear transformations. In particular, we show that very little change occurs in the informative eigenstructure, even under drastic sparsification/quantization, and consequently that very little downstream performance loss occurs when working with very aggressively sparsified or quantized spectral clustering problems. We illustrate how these results depend on the nonlinearity, we characterize a phase transition beyond which spectral clustering becomes possible, and we show when such nonlinear transformations can introduce spurious non-informative eigenvectors.


In the segmentation of fine-scale structures from natural and biomedical images, per-pixel accuracy is not the only metric of concern. Topological correctness, such as vessel connectivity and membrane closure, is crucial for downstream analysis tasks. In this paper, we propose a new approach to train deep image segmentation networks for better topological accuracy. In particular, leveraging the power of discrete Morse theory (DMT), we identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy. Trained with a novel loss based on these global structures, the network performance is significantly improved especially near topologically challenging locations (such as weak spots of connections and membranes). On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.

Searching for novel molecules with desired chemical properties is crucial in drug discovery. Existing work focuses on developing neural models to generate either molecular sequences or chemical graphs. However, it remains a big challenge to find novel and diverse compounds satisfying several properties. In this paper, we propose MARS, a method for multi-objective drug molecule discovery. MARS is based on the idea of generating the chemical candidates by iteratively editing fragments of molecular graphs. To search for high-quality candidates, it employs Markov chain Monte Carlo sampling (MCMC) on molecules with an annealing scheme and an adaptive proposal. To further improve sample efficiency, MARS uses a graph neural network (GNN) to represent and select candidate edits, where the GNN is trained on-the-fly with samples from MCMC. Experiments show that MARS achieves state-of-the-art performance in various multi-objective settings where molecular bio-activity, drug-likeness, and synthesizability are considered. Remarkably, in the most challenging setting where all four objectives are simultaneously optimized, our approach outperforms previous methods significantly in comprehensive evaluations. The code is available at https://github.com/yutxie/mars.

Sliced-Wasserstein distance (SW) and its variant, Max Sliced-Wasserstein distance (Max-SW), have been used widely in the recent years due to their fast computation and scalability even when the probability measures lie in a very high dimensional space. However, SW requires many unnecessary projection samples to approximate its value while Max-SW only uses the most important projection, which ignores the information of other useful directions. In order to account for these weaknesses, we propose a novel distance, named Distributional Sliced-Wasserstein distance (DSW), that finds an optimal distribution over projections that can balance between exploring distinctive projecting directions and the informativeness of projections themselves. We show that the DSW is a generalization of Max-SW, and it can be computed efficiently by searching for the optimal push-forward measure over a set of probability measures over the unit sphere satisfying certain regularizing constraints that favor distinct directions. Finally, we conduct extensive experiments with large-scale datasets to demonstrate the favorable performances of the proposed distances over the previous sliced-based distances in generative modeling applications.
Closing Remarks Fri 7 May 07:00 a.m.
Workshop: Science and Engineering of Deep Learning Fri 7 May 11:30 a.m.
We aim to create a venue where we discuss seemingly contrasting challenges in machine learning research and their consequences. We invite researchers to discuss the boundaries between science and engineering, the implications of having blurred boundaries, and their potential consequences in areas of life beyond research.
We organized the first ``Science meets Engineering in Deep Learning'' workshop at NeurIPS 2019, which aimed to identify the potential boundaries between science and engineering and the role of theoretically driven and application-driven research in deep learning. The workshop's discussions highlighted how intertwined science and engineering are and emphasized the benefits of their symbiotic relationship to push the boundaries of both theoretically driven and application-driven research. To highlight the communication channel we aimed to build, we chose "Science meets Engineering'' in the title for the first iteration of the workshop.
Since then, such boundaries appear harder and harder to draw, and it becomes increasingly clear that we need to agree on a set of values that define us as a community, and that will shape our future research. In particular, we envision that such values will help (1) emphasize important engineering and scientific practices that we should foster to increase the robustness of our research, (2) acknowledge the broader impact of our research, and (3) abide by ethical standards.
Reflecting this shift in perspective, this year's proposed title is "Science and Engineering of Deep Learning''. With this in mind, we are proposing the second iteration of the workshop for ICLR 2021, focusing on the core themes mentioned above. In particular, we would like to ask (1) "What are the scientific and engineering practices that we should promote as a community?" and "How do those interact?", and (2) "What is the broader impact of such adopted scientific and engineering practices?"
https://sites.google.com/view/sedl-workshop
Workshop: Neural Compression: From Information Theory to Applications Fri 7 May 12:30 p.m.
Data compression is a problem of great practical importance, and a new frontier for machine learning research that combines empirical findings (from the deep probabilistic modeling literature) with fundamental theoretical insights (from information theory, source coding, and minimum description length theory). Recent work building on deep generative models such as variational autoencoders, GANs, and normalizing flows showed that novel machine-learning-based compression methods can significantly outperform state-of-the-art classical compression codecs for image and video data. At the same time, these neural compression methods provide new evaluation metrics for model and inference performance on a rate/distortion trade-off. This workshop aims to draw more attention to the young and highly impactful field of neural compression. In contrast to other workshops that focus on practical compression performance, our goal is to bring together researchers from deep learning, information theory, and probabilistic modeling, to learn from each other and to encourage exchange on fundamentally novel issues such as the role of stochasticity in compression algorithms or ethical risks of semantic compression artifacts.
Workshop: Hardware-Aware Efficient Training of Deep Learning Models Fri 7 May 01:45 p.m.
To reach top-tier performance, deep learning architectures usually rely on a large number of parameters and operations, and thus require to be processed using considerable power and memory. Numerous works have proposed to tackle this problem using quantization of parameters, pruning, clustering of parameters, decompositions of convolutions, or using distillation. However, most of these works aim at accelerating only the inference process and disregard the training phase. In practice, however, it is the learning phase that is by far the most complex. There has been recent efforts in introducing some compression on the training process, however, it remains challenging. In this workshop, we propose to focus on reducing the complexity of the training process. Our aim is to gather researchers interested in reducing energy, time, or memory usage for faster/cheaper/greener prototyping or deployment of deep learning models. Due to the dependence of deep learning on large computational capacities, the outcomes of the workshop could benefit all who deploy these solutions, including those who are not hardware specialists. Moreover, it would contribute to making deep learning more accessible to small businesses and small laboratories. Indeed, training complexity is of interest to many distinct communities. A first example is training on edge devices, where training can be used to specialize to data obtained online when the data cannot be transmitted back to the cloud because of constraints on privacy or communication bandwidth. Another example is accelerating training on dedicated hardware such as GPUs or TPUs.
Workshop: Geometric and Topological Representation Learning Fri 7 May 02:00 p.m.
Over the past two decades, high-throughput data collection technologies have become commonplace in most fields of science and technology, and with them an ever-increasing amount of big high dimensional data is being generated by virtually every real-world system. While such data systems are highly diverse in nature, the underlying data analysis and exploration task give rise to common challenges at the core of modern representation learning. For example, even though modern real-world data typically have high dimensional ambient measurement spaces, they often exhibit low dimensional intrinsic structures that can be uncovered by geometry-oriented methods, such as the ones encountered in manifold learning, graph signal processing, geometric deep learning, and topological data analysis. As a result, recent years have seen significant interest and progress in geometric and topological approaches to representation learning,whichenabletractableexploratoryanalysisbydomainexpertswhoareoftennotcomputationoriented. Our overarching goal in the proposed workshop is to deepen our understanding of the challenges and opportunities in this field, while breaking the barriers between the typically disjoint computational approaches (or communities) that work in this field, with emphasis on the domains of topological data analysis, graph representation learning, and manifold learning, on which we shall subsequently briefly comment.
Website: https://gt-rl.github.io/
Workshop: S2D-OLAD: From shallow to deep, overcoming limited and adverse data Fri 7 May 02:00 p.m.
Data coupled with the right algorithms offers the potential to save lives, protect the environment and increase profitability in different applications and domains. This potential, however, can be severely inhibited by adverse data properties specifically resulting in poor model performance, failed projects, and potentially serious social implications. This workshop will examine representation learning in the context of limited and sparse training samples, class imbalance, long-tailed distributions, rare cases and classes, and outliers. Speakers and participants will discuss the challenges and risks associated with designing, developing and learning deep representations from data with adverse properties. In addition, the workshop aims to connect researchers devoted to these topics in the traditional shallow representation learning research community and the more recent deep learning community, in order to advance novel and holistic solutions. Critically, given the growth in the application of AI to real-world decision making, the workshop will also facilitate a discussion of the potential social issues associated with application of deep representation learning in the context of data adversity. The workshop will bring together theoretical and applied deep learning researchers from academia and industry, and lay the groundwork for fruitful research collaborations that span communities that are often siloed.
Workshop: Beyond Static Papers: Rethinking How We Share Scientific Understanding in ML Fri 7 May 02:15 p.m.
Over the last decade, the volume of conference submissions in machine learning has broken records. Despite rapid advancements and increasing hype around AI, there is growing concern in the ML community about where the field is headed. The current pandemic gives researchers a long-awaited opportunity to pause and reflect: what kind of legacy do we want to leave behind? How are scientific results presented? How do we interpret and explain them? Does this process include and/or allow access to all stakeholders? Are the results reproducible? These are some of the many facets of effective scientific communication which will shape the next decade of ML research.
How much research is overlooked due to inaccessible communication? How many papers will be as readable in ten or twenty years? How can we make the proceedings more accessible for future generations of ML researchers? These are a few of the questions we plan to discuss in our workshop. We hope to instigate an exciting discussion on redesigning the scientific paper for the next few years of machine learning research!
Workshop: Self-Supervision for Reinforcement Learning Fri 7 May 02:45 p.m.
Reinforcement learning entails letting an agent learn through interaction with an environment. The formalism is powerful in it’s generality, and presents us with a hard open-ended problem: how can we design agents that learn efficiently, and generalize well, given only sensory information and a scalar reward signal? The goal of this workshop is to explore the role of self-supervised learning within reinforcement learning agents, to make progress towards this goal.
Workshop: Energy-Based Models: Current Perspectives, Challenges, and Opportunities Fri 7 May 02:50 p.m.
Energy-Based Models (EBMs) are a learning framework that assigns a quality score to any given input, its energy; contrary to
probabilistic models, there is no a priori requirement that these scores be normalized (i.e. sum to one). Energies are typically
computed through a neural network, and training an EBM corresponds to shaping the energy function such that data points nearby the underlying data manifold are associated with lower energies than data points that are far from it. Not imposing normalization affords a great power and flexibility to the modelling process, e.g. in terms of combining energies, on conditioning on certain variables, of computing global scores on complex structured objects, or on expressing prior
knowledge. However, this freedom comes with significant technical challenges, in terms of learning and inference.
A strong comeback of EBMs is currently underway. This ICLR-2021 Workshop is the opportunity to increase awareness about the diversity of works in this area, to discuss current challenges, and to encourage cross-pollination between different communities around this topic.
Workshop: AI for Public Health Fri 7 May 02:55 p.m.
The COVID-19 pandemic has cast a spotlight on the importance of public health. Even beyond this current emergency, public health is an essential component of population-level wellbeing. Topics such as infectious disease surveillance and control, preventative health, behavioral and mental health, maternal and child wellbeing, and more all play a crucial role in society. Moreover, a range of applications in public health benefit from careful use of data to uncover outbreak dynamics, learn patterns of behavior, optimize the design of interventions, and more. The science of machine learning in a public health context is still rapidly developing, and our aim is to build a community encompassing researchers based in both machine learning and public health to address these shared questions.
Workshop: The Role of Mathematical Reasoning in General Artificial Intelligence Fri 7 May 02:55 p.m.
In this workshop, we focus on a particular kind of reasoning ability, namely, mathematical reasoning. Advanced mathematical reasoning is unique in human intelligence, and it is also a fundamental building block for many intellectual pursuits and scientific developments. We believe that addressing this problem has the potential to shed light on a path towards general reasoning mechanisms, and hence general artificial intelligence. Therefore, we would like to bring together a group of experts from various backgrounds to discuss the role of mathematical reasoning ability towards the path of demonstrating general artificial intelligence. In addition, we hope to identify missing elements and major bottlenecks towards demonstrating mathematical reasoning ability in AI systems.
Workshop on Neural Architecture Search Fri 7 May 03:00 p.m.
Neural Architecture Search (NAS) is an exciting new field of study that is taking representation learning to the next level by allowing us to learn the architectures in a data-driven way that then enables efficient learning of representations. While representation learning removed the need of manual feature engineering, it shifted the manual task to the manual selection of architectures; as a natural next step, NAS replaces this manual architecture selection step, allowing us true end-to-end learning of the architecture, the features, and the final classifier using the features expressed as instantiations of the architecture.
Since the first workshop on NAS at ICLR 2020, there have been many new developments in NAS. Firstly, there has been a large increase in standardized tabular benchmarks and more researchers releasing source code, leading to more rigorous empirical NAS research and also allowing research groups without access to industry-scale compute resources to run thorough experimental evaluations. Secondly, there are now several works aiming for standardized and modularized open-source libraries that allow for both clean evaluations of different approaches without confounding factors and for mixing and matching components of different NAS methods. Finally, by now there are also several applications of NAS beyond its original narrow focus on object recognition, to fields like semantic segmentation, speech recognition, and natural language processing.
In this workshop, we want to push NAS to the next level and aim to address questions (see proposal) which are of particular relevance to the NAS community. In terms of prospective participants, our main targets are machine learning researchers interested in understanding and improving current NAS methods, but ML researchers planning to apply existing NAS methods to novel domains are also amongst the target community.
Workshop: A Roadmap to Never-Ending RL Fri 7 May 03:00 p.m.
Humans have a remarkable ability to continually learn and adapt to new scenarios over the duration of their lifetime (Smith & Gasser, 2005). This ability is referred to as never ending learning, also known as continual learning or lifelong learning. Never-ending learning is the constant development of increasingly complex behaviors and the process of building complicated skills on top of those already developed (Ring, 1997), while being able to reapply, adapt and generalize its abilities to new situations. A never-ending learner has the following desiderata
1) it learns behaviors and skills while solving its tasks
2) it invents new subtasks that may later serve as stepping stones
3) it learns hierarchically, i.e. skills learned now can be built upon later
4) it learns without ergodic or resetting assumptions on the underlying (PO)MDP
5) it learns without episode boundaries
6) it learns in a single life without leveraging multiple episodes of experience
There are several facets to building AI agents with never-ending learning abilities. Moreover, different fields have a variety of perspectives to achieving this goal. To this end, we identify key themes for our workshop including cognitive sciences, developmental robotics, agency and abstractions, open-ended learning, world modelling and active inference.
Workshop: AIMOCC -- AI: Modeling Oceans and Climate Change Fri 7 May 03:00 p.m.
Oceans play a key role in the biosphere, regulating the carbon cycle; absorbing emitted CO2 through the biological pump, and a large part of the heat that the remaining CO2 and other greenhouse gases retained in the atmosphere. Understanding the drivers of micro and macroorganisms in the ocean is of paramount importance to understand the functioning of ecosystems and the efficiency of the biological pump in sequestering carbon and thus abating climate change.
AI, ML, and mathematical modeling tools are key to understanding oceans and climate change. Consequently, the topics of interest of this workshop can be grouped into two sets.
In regard to AI and modeling, the main focus is set on:
- handling of graph-structured information,
- ML methods to learn in small data contexts,
- causal relations, interpretability, and explainability in AI,
- integrating model-driven and data-driven approaches, and
- to develop, calibrate, and validate existing mechanistic models.
In the domain application area, the main questions to be addressed are:
- Which are the major patterns in plankton taxa and functional diversity?
- How these patterns and drivers will likely change under climate change?
- How will changes affect the capacity of ocean ecosystems to sequester carbon from the atmosphere?
- What relations bind communities and local conditions?
- What are the links between biodiversity functioning and structure?
- How modern AI and computer vision can be applied as research and discovery support tool to understand planktonic communities?
- How new knowledge can be derived from anomaly detection, causal learning, and explainable AI.
The goal of this workshop is to bring together researchers that are interested and/or applying AI and ML techniques to problems related to marine biology, modeling, and climate change mitigation. We also expect to attract natural science researchers interested in learning about and applying modern AI and ML methods.
Workshop: How Can Findings About The Brain Improve AI Systems? Fri 7 May 03:30 p.m.
The brain comprises billions of neurons organized into an intricate network of highly specialized functional areas. This biological cognitive system can efficiently process vast amounts of multi-modal data to perceive and react to its ever-changing environment. Unlike current AI systems, it does not struggle with domain adaptation, few-shot learning, or common-sense reasoning. Inspiration from neuroscience has benefited AI in the past: dopamine reward signals inspired TD learning, modern convolutional networks mimic the deep, nested information flow in visual cortex, and hippocampal replay of previous experiences has brought about experience replay in reinforcement learning. Recent work at the intersection of neuroscience and AI has made progress in directly integrating neuroscientific data with AI systems and has led to learned representations that are more robust to label corruptions, allow for better generalization in some language tasks, and provide new ways to interpret and evaluate what domain-relevant information is learned by deep neural networks. In this workshop, we aim to examine the extent to which insights about the brain can lead to better AI.
Workshop: Responsible AI (RAI) Fri 7 May 03:45 p.m.
Artificial Intelligence and Machine Learning are increasingly employed by industry and government alike to make or inform high-stakes decisions for people in areas such as employment, credit lending, policing, criminal justice, healthcare, and beyond. Over the past several years, we have witnessed growing concern regarding the risks and unintended consequences of inscrutable ML techniques (in particular, deep learning) in such socially consequential domains. This realization has motivated the community to look closer at the societal impacts of automated decision making and develop tools to ensure the responsible use of AI in society. Chief among the ideals that the ML community has set out to formalize and ensure are safety, interpretability, robustness, and fairness. In this workshop, we examine the community’s progress toward these values and aim to identify areas that call for additional research efforts. In particular, by bringing researchers with diverse backgrounds, we will focus on the limitations of existing formulations of fairness, explainability, robustness and safety, and discuss the tradeoffs among them.
Our workshop will consist of a diverse set of speakers (ranging from researchers with social work background to researchers in the ML community) to discuss transparency, bias and inequity in various real-world problems, including but not limited to criminal justice, health care and medicine, poverty and homelessness, and education. In addition, our invited talks will cover interpretability, and safety of modern machine learning models, their conflicting constraints, ethical and legal issues, and unintended consequences in areas such as self-driving cars and robotics. The workshop aims to further develop these research directions for the machine learning community.
Workshop: Neural Conversational AI: Bridging the Gap Between Research and Real World (NeuCAIR) Fri 7 May 04:00 p.m.
Every day, millions of people use natural language interfaces in virtual digital assistants such as Amazon Alexa, Apple’s Siri, Google, Microsoft Cortana, Samsung’s Bixby and Facebook Potal via in-home devices or phones. At the same time, interest among the NLP research community in conversational systems has blossomed to the extent that Dialogue and Interactive Systems is consistently among the top three tracks in NLP conferences receiving a record number of submissions. Today’s industrial conversational AI systems are built using the traditional NLP pipeline, i.e., natural language understanding, dialog state tracking, dialog policy, and natural language generation. Despite its success, this pipeline fundamentally limits performance, humanness, and scaling of conversational AI systems. To overcome these challenges, dialog researchers have started embracing end-to-end neural approaches for the next generation of conversational AI systems, as such approaches have been setting state-of-the-art performance records on several NLP tasks. However, Neural Conversational AI systems are still far from shippable in the real world. We identify the following main outstanding questions to bridge this gap:
- Grounding in external systems
- Safety/integrity/robustness
- Continual learning
The goal of this workshop is to bring together machine learning researchers and dialog researchers from academia and industry to encourage knowledge transfer and collaboration in this space with the goal of bridging the gap between research and real world use cases in neural approaches to Conversational AI. The ideal outcome of the workshop is to identify a set of concrete research directions for the research community (both NLP and representation learning communities) to enable the next generation of digital assistants via Neural Conversational AI systems. We will make the findings from this workshop broadly available to the research community.
Workshop: Generalization beyond the training distribution in brains and machines Fri 7 May 04:00 p.m.
Deep Neural Networks (DNNs) are the leading approach for nearly all domains of machine learning and computer vision, with performance at times rivaling human perception. However, there is consensus that these models are outmatched by the robustness and versatility of biological brains. DNNs are sensitive to so-called shifts of the training distribution, where systematic differences between the train and test sets can significantly degrade performance. Distributional shifts can be induced by random or structured (adversarial) perturbations, changes in object or scene viewpoint, illumination, or color, and novel compositions of familiar features. These issues are magnified in domains where training data is scarce. In contrast, flexible and efficient generalization is a hallmark of biological perception and intelligence. We believe that the algorithms implemented in biological brains offer clues for how to construct artificial intelligence that can generalize beyond the training distribution.
The limited generalization of neural networks is a critical problem for artificial intelligence, in applications ranging from automated driving and biomedical image analysis, and domains like reinforcement learning, control, and representational theory. Our goal is to address these issues by creating synergies among neuroscientists, cognitive scientists, and artificial intelligence researchers that might lead to novel solutions to this problem or emphasize relevant existing classical work.
Workshop: Synthetic Data Generation: Quality, Privacy, Bias Fri 7 May 04:00 p.m.
Data are the most valuable ingredient of machine learning models to help researchers and companies make informed decisions. However, access to rich, diverse, and clean datasets may not always be possible. One of the reasons for the lack of rich datasets is the substantial amount of time needed for data collection, especially when manual annotation is required. Another reason is the need for protecting privacy, whenever raw data contains sensitive information about individuals and hence cannot be shared directly. A powerful solution that can address both of these challenging scenarios is generating synthetic data. Thanks to the recent advances in generative models, it is possible to create realistic synthetic samples that closely match the distribution of complex, real data. In the case of limited labeled data, synthetic data can be used to augment training data to mitigate overfitting. In the case of protecting privacy, data curators can share the synthetic data instead of the original data, where the utility of the original data is preserved but privacy is protected. Despite the substantial benefits from using synthetic data, the process of synthetic data generation is still an ongoing technical challenge. Although the two scenarios of limited data and privacy concerns share similar technical challenges such as quality and fairness, they are often studied separately. We will bring together researchers from both fields in order to discuss challenges and advances in synthetic data generation.
Workshop on Weakly Supervised Learning Fri 7 May 04:00 p.m.
Deep learning relies on massive training sets of labeled examples to learn from - often tens of thousands to millions to reach peak predictive performance. However, large amounts of training data are only available for very few standardized learning problems. Even small variations of the problem specification or changes in the data distribution would necessitate re-annotation of large amounts of data.
However, domain knowledge can often be expressed by sets of prototypical descriptions. These knowledge-based descriptions can be either used as rule-based predictors or as labeling functions for providing partial data annotations. The growing field of weak supervision provides methods for refining and generalizing such heuristic-based annotations in interaction with deep neural networks and large amounts of unannotated data.
In this workshop, we want to advance theory, methods and tools for allowing experts to express prior coded knowledge for automatic data annotations that can be used to train arbitrary deep neural networks for prediction. Learning with weak supervision is both studied from a theoretical perspective as well as applied to a variety of tasks from areas like natural language processing and computer vision. This workshop aims at bringing together researchers from this wide range of fields to facilitate discussions across research areas that share the common ground of using weak supervision. A target of this workshop is also to inspire applications of weak supervision to new scenarios and to enable researchers to work on tasks that so far have been considered too low-resource.
As weak supervision addresses one of the major issues of current machine learning techniques, the lack of labeled data, it has also started to obtain commercial interest. This workshop is an opportunity to bridge innovations from academia and the requirements of industry settings.
2nd Workshop on Practical ML for Developing Countries: Learning Under Limited/low Resource Scenarios Fri 7 May 04:00 p.m.
The constant progress being made in artificial intelligence needs to extend across borders if we are to democratize AI in developing countries. Adapting the state-of-the-art (SOTA) methods to resource constrained environments such as developing countries is challenging in practice. Recent breakthroughs in natural language processing (NLP), for instance, rely on increasingly complex and large models (e.g. most models based on transformers such as BERT, VilBERT, ALBERT, and GPT-2) that are pre-trained in on large corpus of unlabeled data. In most developing countries, low/limited resources means hard path towards adoption of these breakthroughs. Methods such as transfer learning will not fully solve the problem either due to bias in pre-training datasets that do not reflect real test cases in developing countries as well as the prohibitive cost of fine-tuning these large models. Recent progress with focus given to ML for social good has the potential to alleviate the problem in part. However, the themes in such workshops are usually application driven such as ML for healthcare and for education, and less attention is given to practical aspects as it relates to developing countries in implementing these solutions in low or limited resource scenarios. This, in turn, hinders the democratization of AI in developing countries. As a result, we aim to fill the gap by bringing together researchers, experts, policy makers and related stakeholders under the umbrella of practical ML for developing countries. The workshop is geared towards fostering collaborations and soliciting submissions under the broader theme of practical aspects of implementing machine learning (ML) solutions for problems in developing countries. We specifically encourage contributions that highlight challenges of learning under limited or low resource environments that are typical in developing countries.
Workshop on Learning to Learn Fri 7 May 04:00 p.m.
Recent years have seen a lot of interest in the use and development of learning-to-learn algorithms. Research on learning-to-learn, or meta-learning, algorithms is often motivated by the hope to learn representations that can be easily transferred to the learning of new skills, and lead to faster learning. Yet, current meta-learned representations often struggle to generalize to novel task settings. In this workshop, we’d like to discuss how humans meta-learn, and what we can and should expect from learning-to-learn in the field of machine learning. Our aim is to bring together researchers from a variety of backgrounds with the hope to discuss and reason about what learning to learn means from a cognitive perspective, and how this knowledge might translate into algorithmic advances. In particular we are interested in creating a platform to enable the exchange between the fields of neuroscience and machine learning.
We believe that it is an important moment for the machine learning community to reflect upon these questions in order to advance the field and increase its variety in approaching learning to learn. We hope that by fostering discussions between cognitive science and machine learning researchers, we enable both sides to draw inspiration to further the understanding and development of learning-to-learn algorithms.
Workshop on Enormous Language Models: Perspectives and Benchmarks Fri 7 May 04:45 p.m.
Language models that have been trained on unlabeled text data are a cornerstone of modern natural language processing (NLP) research, and many recent state-of-the-art results in NLP were achieved by leveraging these self-supervised models. The success of this recipe is largely thanks to scalability: Better results can often be obtained by training larger models on larger amounts of unlabeled text data. This places our field at a crossroads. Will scaling lead to models that outperform humans on all text-based tasks, or are there limits to the scalability of these models? Should we focus on simply scaling these models, or should we design more sophisticated architectures and training schemes? Do our current benchmark effectively test capabilities that humans can master but large language models lack? How can we address the legal and ethical issues that arise from using unstructured web crawls for training language models? What can we learn from the fields of cognition, linguistics, and philosophy as we attempt to measure the “intelligence” of machines? The goal of this workshop is to find answers to these questions by inviting a diverse group of researchers to critically examine the state of giant language models.
This workshop will have a non-standard submission format: Rather than submitting research papers, participants will be invited to contribute diverse tasks that they believe measure uniquely human or particularly challenging capabilities for large language models. Teams at Google and OpenAI have committed to evaluate this task set on their best-performing model architectures, across models spanning from tens of thousands through hundreds of billions or more of parameters. Researchers will also be invited to contribute and evaluate their own models on these tasks. We will analyze these experiments, and report the results at the workshop, with a particular focus on how model performance on different task types scales with model size. By inviting contributions of tasks or models, we provide a means for researchers to participate whether or not they have the (cost-prohibitive) computational resources to train giant language models. The end result will be the Beyond the Imitation Game Benchmark (BIG Bench): A novel participant-driven test of the limits of giant language models. Find out more about BIG Bench and participate here.
ICLR 2021 Workshop on Embodied Multimodal Learning (EML) Fri 7 May 04:55 p.m.
Despite encouraging progress in embodied learning over the past two decades, there is still a large gap between embodied agents' perception and human perception. Humans have remarkable capabilities combining all our multisensory inputs. To close the gap, embodied agents should also be enabled to see, hear, touch, and interact with their surroundings in order to select the appropriate actions. However, today's learning algorithms primarily operate on a single modality. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals jointly. The goal of this workshop is to share recent progress and discuss current challenges on embodied learning with multiple modalities.
The EML workshop will bring together researchers in different subareas of embodied multimodal learning including computer vision, robotics, machine learning, natural language processing, and cognitive science to examine the challenges and opportunities emerging from the design of embodied agents that unify their multisensory inputs. We will review the current state and identify the research infrastructure needed to enable a stronger collaboration between researchers working on different modalities.
Workshop: Robust and reliable machine learning in the real world Fri 7 May 05:00 p.m.
As machine learning (ML) is deployed pervasively, there is an increasing demand for ML systems to behave reliably when the input to the system has changed. Much work has emerged regarding artificial and natural changes to data, with a growing interest towards studying robustness and reliability of ML systems in the presence of real-world changes. This shift towards more realistic considerations raises both old and new fundamental questions for machine learning:
1. Can we bring principled research in robustness closer to real-world effects?
2. How can we demonstrate the reliability of ML systems in real-world deployments?
3. What are the unique societal and legal challenges facing robustness for deployed ML systems?
Consequently, the goal of this workshop is to bring together research in robust machine learning with the demands and reliability constraints of real-world processes and systems, with a focus on the practical, theoretical, and societal challenges in bringing these approaches to real world-scenarios. We highlight emerging directions, paradigms, and applications which include 1. Characterizing real-world changes for robustness; 2. Reliability of real-world systems; 3. Societal and legal considerations.
Workshop on Distributed and Private Machine Learning Fri 7 May 05:30 p.m.
Over the last decade, progress in machine learning has resulted in a surge of data-driven services affecting our daily lives. Conversational agents, healthcare providers, online retailers, and social networks continually access and jointly process vast amounts of data about their geographically distributed customers. Progress in distributed machine learning technology which has enabled widespread adoption and personalization has also raised issues regarding privacy, accountability, and fairness. This tension is particularly apparent in the context of the Covid-19 pandemic. This motivates the need to jointly address distributed and private machine learning technologies.
Workshop: Security and Safety in Machine Learning Systems Fri 7 May 05:45 p.m.
While machine learning (ML) models have achieved great success in many applications, concerns have been raised about their potential vulnerabilities and risks when applied to safety-critical applications. On the one hand, from the security perspective, studies have been conducted to explore worst-case attacks against ML models and therefore inspire both empirical and certifiable defense approaches. On the other hand, from the safety perspective, researchers have looked into safe constraints, which should be satisfied by safe AI systems (e.g. autonomous driving vehicles should not hit pedestrians). This workshop makes the first attempts towards bridging the gap of these two communities and aims to discuss principles of developing secure and safe ML systems. The workshop also focuses on how future practitioners should prepare themselves for reducing the risks of unintended behaviors of sophisticated ML models.
The workshop will bring together experts from machine learning, computer security, and AI safety communities. We attempt to highlight recent related work from different communities, clarify the foundations of secure and safe ML, and chart out important directions for future work and cross-community collaborations.
Workshop: Machine Learning for Preventing and Combating Pandemics Fri 7 May 05:45 p.m.
Pandemics are major disasters in human history. The recent COVID-19 pandemic has caused about 0.52 million deaths and infected about 11 million people all over the world as of July 3. In the past two decades, several pandemics/ epidemics including Zika, SARS, Ebola, H1N1 Flu, etc. have killed a large number of people. Medical experts predict that future pandemics will periodically occur and may be even worse than past ones. Since the outbreak of COVID-19, AI researchers have been developing methods to combat this pandemic, including building forecasting models to predict the spread of coronavirus, developing computer vision methods to analyze CT scans and chest X-rays for screening and risk assessment of infected cases, leveraging computational biology methods for vaccine development, etc. These efforts have shown high utility in controlling the spread of COVID-19 and pave a promising way for preventing future pandemics. To further promote research on AI-based control of pandemics, we aim to organize a workshop which brings together researchers in machine learning, healthcare, medicine, public health, etc. and facilitates discussions and collaborations in developing machine learning and AI methods to diagnose and treat infectious diseases and prevent and contain pandemics. Different from previous healthcare-related workshops, our workshop focuses on infectious diseases and health problems related to pandemic.
Workshop: Deep Learning for Simulation Fri 7 May 05:45 p.m.
Recently there has been a surge in interest in using deep learning to facilitate simulation, in application areas including physics, chemistry, robotics and graphics.
We define simulation as the process of iteratively generating output of the next time step using the output of the previous time step as input starting from an initial condition. The primary motivation of the workshop is thus to encourage knowledge sharing and communication. Recent works have started to actively explore the potential of using deep learning to improve these highly important simulations in terms of accuracy and efficiency. We believe that this workshop will bring these communities together, create communication and collaboration, in order to speed-up research on this important topic.