Skip to yearly menu bar Skip to main content


Session

Poster Session 1

MH1-2-3-4

Abstract:

Chat is not available.


In-Person Poster presentation / poster accept
#137
GOGGLE: Generative Modelling for Tabular Data by Learning Relational Structure

Tennison Liu · Zhaozhi Qian · Jeroen Berrevoets · Mihaela van der Schaar

Deep generative models learn highly complex and non-linear representations to generate realistic synthetic data. While they have achieved notable success in computer vision and natural language processing, similar advances have been less demonstrable in the tabular domain. This is partially because generative modelling of tabular data entails a particular set of challenges, including heterogeneous relationships, limited number of samples, and difficulties in incorporating prior knowledge. Additionally, unlike their counterparts in image and sequence domain, deep generative models for tabular data almost exclusively employ fully-connected layers, which encode weak inductive biases about relationships between inputs. Real-world data generating processes can often be represented using relational structures, which encode sparse, heterogeneous relationships between variables. In this work, we learn and exploit relational structure underlying tabular data to better model variable dependence, and as a natural means to introduce regularization on relationships and include prior knowledge. Specifically, we introduce GOGGLE, an end-to-end message passing scheme that jointly learns the relational structure and corresponding functional relationships as the basis of generating synthetic samples. Using real-world datasets, we provide empirical evidence that the proposed method is effective in generating realistic synthetic data and exploiting domain knowledge for downstream tasks.


In-Person Poster presentation / poster accept
#41
MaskViT: Masked Visual Pre-Training for Video Prediction

Agrim Gupta · Stephen Tian · Yunzhi Zhang · Jiajun Wu · Roberto Martín-Martín · Li Fei-Fei

The ability to predict future visual observations conditioned on past observations and motor commands can enable embodied agents to plan solutions to a variety of tasks in complex environments. This work shows that we can create good video prediction models by pre-training transformers via masked visual modeling. Our approach, named MaskViT, is based on two simple design decisions. First, for memory and training efficiency, we use two types of window attention: spatial and spatiotemporal. Second, during training, we mask a variable percentage of tokens instead of a fixed mask ratio. For inference, MaskViT generates all tokens via iterative refinement where we incrementally decrease the masking ratio following a mask scheduling function. On several datasets we demonstrate that MaskViT outperforms prior works in video prediction, is parameter efficient, and can generate high resolution videos ($256 \times $256). Further, we demonstrate the benefits of inference speedup (up to $512 \times$) due to iterative decoding by using MaskViT for planning on a real robot. Our work suggests that we can endow embodied agents with powerful predictive models by leveraging the general framework of masked visual modeling with minimal domain knowledge.


Virtual presentation / poster accept
#52
DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models

Shansan Gong · Mukai Li · Jiangtao Feng · Zhiyong Wu · Lingpeng Kong

Recently, diffusion models have emerged as a new paradigm for generative models. Despite the success in domains using continuous signals such as vision and audio, adapting diffusion models to natural language is under-explored due to the discrete nature of texts, especially for conditional generation. We tackle this challenge by proposing DiffuSeq: a diffusion model designed for sequence-to-sequence (Seq2Seq) text generation tasks. Upon extensive evaluation over a wide range of Seq2Seq tasks, we find DiffuSeq achieving comparable or even better performance than six established baselines, including a state-of-the-art model that is based on pre-trained language models. Apart from quality, an intriguing property of DiffuSeq is its high diversity during generation, which is desired in many Seq2Seq tasks. We further include a theoretical analysis revealing the connection between DiffuSeq and autoregressive/non-autoregressive models. Bringing together theoretical analysis and empirical evidence, we demonstrate the great potential of diffusion models in complex conditional language generation tasks. Code is available at https://github.com/Shark-NLP/DiffuSeq


In-Person Poster presentation / poster accept
#60
Understanding Edge-of-Stability Training Dynamics with a Minimalist Example

Xingyu Zhu · Zixuan Wang · Xiang Wang · Mo Zhou · Rong Ge

Recently, researchers observed that gradient descent for deep neural networks operates in an ``edge-of-stability'' (EoS) regime: the sharpness (maximum eigenvalue of the Hessian) is often larger than stability threshold $2/\eta$ (where $\eta$ is the step size). Despite this, the loss oscillates and converges in the long run, and the sharpness at the end is just slightly below $2/\eta$. While many other well-understood nonconvex objectives such as matrix factorization or two-layer networks can also converge despite large sharpness, there is often a larger gap between sharpness of the endpoint and $2/\eta$. In this paper, we study EoS phenomenon by constructing a simple function that has the same behavior. We give rigorous analysis for its training dynamics in a large local region and explain why the final converging point has sharpness close to $2/\eta$. Globally we observe that the training dynamics for our example has an interesting bifurcating behavior, which was also observed in the training of neural nets.


In-Person Poster presentation / poster accept
#75
Pushing the Accuracy-Group Robustness Frontier with Introspective Self-play

Jeremiah Zhe Liu · Krishnamurthy Dvijotham · Jihyeon Lee · Quan Yuan · Balaji Lakshminarayanan · Deepak Ramachandran

Standard empirical risk minimization (ERM) training can produce deep neural network (DNN) models that are accurate on average but under-perform in under-represented population subgroups, especially when there are imbalanced group distributions in the long-tailed training data. Therefore, approaches that improve the accuracy - group robustness trade-off frontier of a DNN model (i.e. improving worst-group accuracy without sacrificing average accuracy, or vice versa) is of crucial importance. Uncertainty-based active learning (AL) can potentially improve the frontier by preferentially sampling underrepresented subgroups to create a more balanced training dataset. However, the quality of uncertainty estimates from modern DNNs tend to degrade in the presence of spurious correlations and dataset bias, compromising the effectiveness of AL for sampling tail groups. In this work, we propose Introspective Self-play (ISP), a simple approach to improve the uncertainty estimation of a deep neural network under dataset bias, by adding an auxiliary introspection task requiring a model to predict the bias for each data point in addition to the label. We show that ISP provably improves the bias-awareness of the model representation and the resulting uncertainty estimates. On two real-world tabular and language tasks,ISP serves as a simple “plug-in” for AL model training, consistently improving both the tail-group sampling rate and the final accuracy-fairness trade-off frontier of popular AL methods.


In-Person Poster presentation / poster accept
#86
A Neural Mean Embedding Approach for Back-door and Front-door Adjustment

Liyuan Xu · Arthur Gretton

We consider the estimation of average and counterfactual treatment effects, under two settings: back-door adjustment and front-door adjustment. The goal in both cases is to recover the treatment effect without having an access to a hidden confounder. This objective is attained by first estimating the conditional mean of the desired outcome variable given relevant covariates (the first stage" regression), and then taking the (conditional) expectation of this function as asecond stage" procedure. We propose to compute these conditional expectations directly using a regression function to the learned input features of the first stage, thus avoiding the need for sampling or density estimation. All functions and features (and in particular, the output features in the second stage) are neural networks learned adaptively from data, with the sole requirement that the final layer of the first stage should be linear. The proposed method is shown to converge to the true causal parameter, and outperforms the recent state-of-the-art methods on challenging causal benchmarks, including settings involving high-dimensional image data.


Virtual presentation / poster accept
#92
Understanding DDPM Latent Codes Through Optimal Transport

Valentin Khrulkov · Gleb Ryzhakov · Andrei Chertkov · Ivan Oseledets

Diffusion models have recently outperformed alternative approaches to model the distribution of natural images. Such diffusion models allow for deterministic sampling via the probability flow ODE, giving rise to a latent space and an encoder map. While having important practical applications, such as the estimation of the likelihood, the theoretical properties of this map are not yet fully understood. In the present work, we partially address this question for the popular case of the VP-SDE (DDPM) approach. We show that, perhaps surprisingly, the DDPM encoder map coincides with the optimal transport map for common distributions; we support this claim by extensive numerical experiments using advanced tensor train solver for multidimensional Fokker-Planck equation. We provide additional theoretical evidence for the case of multivariate normal distributions.


In-Person Poster presentation / poster accept
#98
How to prepare your task head for finetuning

YI REN · Shangmin Guo · Wonho Bae · Danica Sutherland

In the era of deep learning, transferring information from a pretrained network to a downstream task by finetuning has many benefits. The choice of task head plays an important role in fine-tuning, as the pretrained and downstream tasks are usually different. Although there exist many different designs for finetuning, a full understanding of when and why these algorithms work has been elusive. We analyze how the choice of task head controls feature adaptation and hence influences the downstream performance. By decomposing the feature's learning dynamics, we find the key aspect is the training accuracy and loss at the beginning of finetuning, which determines the "energy" available for the feature's adaptation. We identify a significant trend in the effect of changes in this initial energy on the resulting features after finetuning. Specifically, as the energy increases, the Euclidean and cosine distances between the resulting and original features increase, while their dot product (and the resulting features’ norm) first increases and then decreases. Inspired by this, we give several practical principles that lead to better downstream performance. We analytically prove this trend in an overparamterized linear setting and verify its applicability to different experimental settings.


In-Person Poster presentation / poster accept
#38
GLM-130B: An Open Bilingual Pre-trained Model

Aohan Zeng · Xiao Liu · Zhengxiao Du · Zihan Wang · Hanyu Lai · Ming Ding · Zhuoyi Yang · Yifan Xu · Wendi Zheng · Xiao Xia · Weng Lam Tam · Zixuan Ma · Yufei Xue · Jidong Zhai · Wenguang Chen · Zhiyuan Liu · Peng Zhang · Yuxiao Dong · Jie Tang

We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters. It is an attempt to open-source a 100B-scale model as good as GPT-3 (davinci) and unveil how models of such a scale can be successfully pre-trained. Over the course of this effort, we face numerous unexpected technical and engineering challenges, particularly on loss spikes and divergence. In this paper, we introduce the pre-training process of GLM-130B including its design choices, training strategies for both efficiency and stability, and engineering efforts. The resultant GLM-130B model offers significant outperformance over GPT-3 175B on a wide range of popular English benchmarks while the performance advantage is not observed in OPT-175B and BLOOM-176B. It also consistently and significantly outperforms ERNIE TITAN 3.0 260B—the largest Chinese language model—across related benchmarks. Finally, we leverage a unique scaling property of GLM-130B to reach INT4 quantization with almost no performance loss, making it the first among 100B-scale models and more importantly, allowing its effective inference on 4×RTX 3090 (24G) or 8×RTX 2080 Ti (11G) GPUs, the most ever affordable GPUs required for using 100B-scale models. The GLM-130B model weights are publicly accessible and its code, training logs, related toolkit, and lessons learned are open-sourced at https://github.com/THUDM/GLM-130B/.


In-Person Poster presentation / poster accept
#57
An efficient encoder-decoder architecture with top-down attention for speech separation

Kai Li · Runxuan Yang · Xiaolin Hu

Deep neural networks have shown excellent prospects in speech separation tasks. However, obtaining good results while keeping a low model complexity remains challenging in real-world applications. In this paper, we provide a bio-inspired efficient encoder-decoder architecture by mimicking the brain’s top-down attention, called TDANet, with decreased model complexity without sacrificing performance. The top-down attention in TDANet is extracted by the global attention (GA) module and the cascaded local attention (LA) layers. The GA module takes multi-scale acoustic features as input to extract global attention signal, which then modulates features of different scales by direct top-down connections. The LA layers use features of adjacent layers as input to extract the local attention signal, which is used to modulate the lateral input in a top-down manner. On three benchmark datasets, TDANet consistently achieved competitive separation performance to previous state-of-the-art (SOTA) methods with higher efficiency. Specifically, TDANet’s multiply-accumulate operations (MACs) are only 5% of Sepformer, one of the previous SOTA models, and CPU inference time is only 10% of Sepformer. In addition, a large-size version of TDANet obtained SOTA results on three datasets, with MACs still only 10% of Sepformer and the CPU inference time only 24% of Sepformer. Our study suggests that top-down attention can be a more efficient strategy for speech separation.


In-Person Poster presentation / poster accept
#37
Characterizing intrinsic compositionality in transformers with Tree Projections

Shikhar Murty · Pratyusha Sharma · Jacob Andreas · Christopher Manning

When trained on language data, do transformers learn some arbitrary computation that utilizes the full capacity of the architecture or do they learn a simpler, tree-like computation, hypothesized to underlie compositional meaning systems like human languages? There is an apparent tension between compositional accounts of human language understanding, which are based on a restricted bottom-up computational process, and the enormous success of neural models like transformers, which can route information arbitrarily between different parts of their input. One possibility is that these models, while extremely flexible in principle, in practice learn to interpret language hierarchically, ultimately building sentence representations close to those predictable by a bottom-up, tree-structured model. To evaluate this possibility, we describe an unsupervised and parameter-free method to \emph{functionally project} the behavior of any transformer into the space of tree-structured networks. Given an input sentence, we produce a binary tree that approximates the transformer's representation-building process and a score that captures how ``tree-like'' the transformer's behavior is on the input. While calculation of this score does not require training any additional models, it provably upper-bounds the fit between a transformer and any tree-structured approximation. Using this method, we show that transformers for three different tasks become more tree-like over the course of training, in some cases unsupervisedly recovering the same trees as supervised parsers. These trees, in turn, are predictive of model behavior, with more tree-like models generalizing better on tests of compositional generalization.


In-Person Poster presentation / poster accept
#56
Pushing the Limits of Fewshot Anomaly Detection in Industry Vision: Graphcore

Guoyang Xie · Jinbao Wang · Jiaqi Liu · Yaochu Jin · Feng Zheng

In the area of few-shot anomaly detection (FSAD), efficient visual feature plays an essential role in the memory bank $\mathcal{M}$-based methods. However, these methods do not account for the relationship between the visual feature and its rotated visual feature, drastically limiting the anomaly detection performance. To push the limits, we reveal that rotation-invariant feature property has a significant impact on industrial-based FSAD. Specifically, we utilize graph representation in FSAD and provide a novel visual isometric invariant feature (VIIF) as an anomaly measurement feature. As a result, VIIF can robustly improve the anomaly discriminating ability and can further reduce the size of redundant features stored in $\mathcal{M}$ by a large amount. Besides, we provide a novel model GraphCore via VIIFs that can fast implement unsupervised FSAD training and improve the performance of anomaly detection. A comprehensive evaluation is provided for comparing GraphCore and other SOTA anomaly detection models under our proposed few-shot anomaly detection setting, which shows GraphCore can increase average AUC by 5.8%, 4.1%, 3.4%, and 1.6% on MVTec AD and by 25.5%, 22.0%, 16.9%, and 14.1% on MPDD for 1, 2, 4, and 8-shot cases, respectively.


In-Person Poster presentation / poster accept
#36
CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers

Wenyi Hong · Ming Ding · Wendi Zheng · Xinghan Liu · Jie Tang

In this work, we present CogVideo, a 9B-parameter transformer for text-to-video generation. The CogVideo model has been trained by inheriting a pretrained text-to-image model, CogView2, which significantly reduces the training cost and alleviates the problem of scarcity and weak relevance. We also propose a multi-frame-rate training strategy for better aligning text and video clips. CogVideo achieves state-of-the-art performance in machine evaluation and outperforms publicly available models by a large margin in human evaluation. Its codes and model are also publicly available at https://github.com/THUDM/CogVideo.


In-Person Poster presentation / poster accept
#55
3D Segmenter: 3D Transformer based Semantic Segmentation via 2D Panoramic Distillation

ZHENNAN WU · YANG LI · Yifei Huang · Lin Gu · Tatsuya Harada · Hiroyuki Sato

Recently, 2D semantic segmentation has witnessed a significant advancement thanks to the huge amount of 2D image datasets available. Therefore, in this work, we propose the first 2D-to-3D knowledge distillation strategy to enhance 3D semantic segmentation model with knowledge embedded in the latent space of powerful 2D models. Specifically, unlike standard knowledge distillation, where teacher and student models take the same data as input, we use 2D panoramas properly aligned with corresponding 3D rooms to train the teacher network and use the learned knowledge from 2D teacher to guide 3D student. To facilitate our research, we create a large-scale, fine-annotated 3D semantic segmentation benchmark, containing voxel-wise semantic labels and aligned panoramas of 5175 scenes. Based on this benchmark, we propose a 3D volumetric semantic segmentation network, which adapts Video Swin Transformer as backbone and introduces a skip connected linear decoder. Achieving a state-of-the-art performance, our 3D Segmenter is computationally efficient and only requires $3.8\%$ of the parameters compared to the prior art. Our code and data will be released upon acceptance.


In-Person Poster presentation / poster accept
#35
Light Sampling Field and BRDF Representation for Physically-based Neural Rendering

Jing Yang · Hanyuan Xiao · Wenbin Teng · Yunxuan Cai · Yajie Zhao

Physically-based rendering (PBR) is key for immersive rendering effects used widely in the industry to showcase detailed realistic scenes from computer graphics assets. A well-known caveat is that producing the same is computationally heavy and relies on complex capture devices. Inspired by the success in quality and efficiency of recent volumetric neural rendering, we want to develop a physically-based neural shader to eliminate device dependency and significantly boost performance. However, no existing lighting and material models in the current neural rendering approaches can accurately represent the comprehensive lighting models and BRDFs properties required by the PBR process. Thus, this paper proposes a novel lighting representation that models direct and indirect light locally through a light sampling strategy in a learned light sampling field. We also propose BRDF models to separately represent surface/subsurface scattering details to enable complex objects such as translucent material (i.e., skin, jade). We then implement our proposed representations with an end-to-end physically-based neural face skin shader, which takes a standard face asset (i.e., geometry, albedo map, and normal map) and an HDRI for illumination as inputs and generates a photo-realistic rendering as output. Extensive experiments showcase the quality and efficiency of our PBR face skin shader, indicating the effectiveness of our proposed lighting and material representations.


In-Person Poster presentation / poster accept
#54
Generating Sequences by Learning to Self-Correct

Sean Welleck · Ximing Lu · Peter West · Faeze Brahman · Tianxiao Shen · Daniel Khashabi · Yejin Choi

Sequence generation applications require satisfying semantic constraints, such as ensuring that programs are correct, using certain keywords, or avoiding undesirable content. Language models, whether fine-tuned or prompted with few-shot demonstrations, frequently violate these constraints, and lack a mechanism to iteratively revise their outputs. Moreover, some powerful language models are of extreme scale or inaccessible, making it inefficient, if not infeasible, to update their parameters for task-specific adaptation. We present Self-Correction, an approach that decouples an imperfect base generator (an off-the-shelf language model or supervised sequence-to-sequence model) from a separate corrector that learns to iteratively correct imperfect generations. To train the corrector, we propose an online training procedure that can use either scalar or natural language feedback on intermediate imperfect generations. We show that Self-Correction improves upon the base generator in three diverse generation tasks - mathematical program synthesis, lexically-constrained generation, and toxicity control - even when the corrector is much smaller than the base generator.


In-Person Poster presentation / poster accept
#34
Rethinking skip connection model as a learnable Markov chain

Chen Dengsheng · Jie Hu · Wenwen Qiang · Xiaoming Wei · Enhua Wu

Over the past few years afterward the birth of ResNet, skip connection has become the defacto standard for the design of modern architectures due to its widespread adoption, easy optimization, and proven performance.Prior work has explained the effectiveness of the skip connection mechanism from different perspectives.In this work, we deep dive into the model's behaviors with skip connections which can be formulated as a learnable Markov chain.An efficient Markov chain is preferred as it always maps the input data to the target domain in a better way.However, while a model is explained as a Markov chain, it is not guaranteed to be optimized following an efficient Markov chain by existing SGD-based optimizers prone to getting trapped in local optimal points.In order to move towards a more efficient Markov chain, we propose a simple routine of penal connection to make any residual-like model become a learnable Markov chain.Aside from that, the penal connection can also be viewed as a particular model regularization and can be easily implemented with one line of code in the most popular deep learning frameworks. The encouraging experimental results in multi-modal translation and image recognition empirically confirm our conjecture of the learnable Markov chain view and demonstrate the superiority of the proposed penal connection.


In-Person Poster presentation / poster accept
#53
Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture of Stochastic Experts

Zhitong Gao · Yucong Chen · Chuyu Zhang · Xuming He

Equipping predicted segmentation with calibrated uncertainty is essential for safety-critical applications. In this work, we focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images. Due to the high-dimensional output space and potential multiple modes in segmenting ambiguous images, it remains challenging to predict well-calibrated uncertainty for segmentation. To tackle this problem, we propose a novel mixture of stochastic experts (MoSE) model, where each expert network estimates a distinct mode of the aleatoric uncertainty and a gating network predicts the probabilities of an input image being segmented in those modes. This yields an efficient two-level uncertainty representation. To learn the model, we develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations. The loss can easily integrate traditional segmentation quality measures and be efficiently optimized via constraint relaxation. We validate our method on the LIDC-IDRI dataset and a modified multimodal Cityscapes dataset. Results demonstrate that our method achieves the state-of-the-art or competitive performance on all metrics.


In-Person Poster presentation / poster accept
#33
Masked Vision and Language Modeling for Multi-modal Representation Learning

Gukyeong Kwon · Zhaowei Cai · Avinash Ravichandran · Erhan Bas · Rahul Bhotika · Stefano Soatto

In this paper, we study how to use masked signal modeling in vision and language (V+L) representation learning. Instead of developing masked language modeling (MLM) and masked image modeling (MIM) independently, we propose to build joint masked vision and language modeling, where the masked signal of one modality is reconstructed with the help from another modality. This is motivated by the nature of image-text paired data that both of the image and the text convey almost the same information but in different formats. The masked signal reconstruction of one modality conditioned on another modality can also implicitly learn cross-modal alignment between language tokens and image patches. Our experiments on various V+L tasks show that the proposed method, along with common V+L alignment losses, not only achieves state-of-the-art performance by using a large amount of data but also outperforms the other competitors by a significant margin in the regimes of limited training data.


In-Person Poster presentation / poster accept
#32
Explaining Temporal Graph Models through an Explorer-Navigator Framework

Wenwen Xia · Mincai Lai · Caihua Shan · Yao Zhang · Xinnan Dai · Xiang Li · Dongsheng Li

While GNN explanation has recently received significant attention, existing works are consistently designed for static graphs. Due to the prevalence of temporal graphs, many temporal graph models have been proposed, but explaining their predictions remains to be explored. To bridge the gap, in this paper, we propose T-GNNExplainer for temporal graph model explanation. Specifically, we regard a temporal graph constituted by a sequence of temporal events. Given a target event, our task is to find a subset of previously occurred events that lead to the model's prediction for it. To handle this combinatorial optimization problem, T-GNNExplainer includes an explorer to find the event subsets with Monte Carlo Tree Search (MCTS) and a navigator that learns the correlations between events and helps reduce the search space. In particular, the navigator is trained in advance and then integrated with the explorer to speed up searching and achieve better results. To the best of our knowledge, T-GNNExplainer is the first explainer tailored for temporal graph models. We conduct extensive experiments to evaluate the performance of T-GNNExplainer. Experimental results on both real-world and synthetic datasets demonstrate that T-GNNExplainer can achieve superior performance with up to about 50% improvement in Area under Fidelity-Sparsity Curve.


In-Person Poster presentation / poster accept
#51
Trainability Preserving Neural Pruning

Huan Wang · Yun Fu

Many recent works have shown trainability plays a central role in neural network pruning -- unattended broken trainability can lead to severe under-performance and unintentionally amplify the effect of retraining learning rate, resulting in biased (or even misinterpreted) benchmark results. This paper introduces trainability preserving pruning (TPP), a scalable method to preserve network trainability against pruning, aiming for improved pruning performance and being more robust to retraining hyper-parameters (e.g., learning rate). Specifically, we propose to penalize the gram matrix of convolutional filters to decorrelate the pruned filters from the retained filters. In addition to the convolutional layers, per the spirit of preserving the trainability of the whole network, we also propose to regularize the batch normalization parameters (scale and bias). Empirical studies on linear MLP networks show that TPP can perform on par with the oracle trainability recovery scheme. On nonlinear ConvNets (ResNet56/VGG19) on CIFAR10/100, TPP outperforms the other counterpart approaches by an obvious margin. Moreover, results on ImageNet-1K with ResNets suggest that TPP consistently performs more favorably against other top-performing structured pruning approaches. Code: https://github.com/MingSun-Tse/TPP.


In-Person Poster presentation / top 25% paper
#31
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!

Shiwei Liu · Tianlong Chen · Zhenyu Zhang · Xuxi Chen · Tianjin Huang · AJAY JAISWAL · Zhangyang Wang

Sparse Neural Networks (SNNs) have received voluminous attention predominantly due to growing computational and memory footprints of consistently exploding parameter count in large-scale models. Similar to their dense counterparts, recent SNNs generalize just as well and are equipped with numerous favorable benefits (e.g., low complexity, high scalability, and robustness), sometimes even better than the original dense networks. As research effort is focused on developing increasingly sophisticated sparse algorithms, it is startling that a comprehensive benchmark to evaluate the effectiveness of these algorithms has been highly overlooked. In absence of a carefully crafted evaluation benchmark, most if not all, sparse algorithms are evaluated against fairly simple and naive tasks (eg. CIFAR-10/100, ImageNet, GLUE, etc.), which can potentially camouflage many advantages as well unexpected predicaments of SNNs. In pursuit of a more general evaluation and unveiling the true potential of sparse algorithms, we introduce “Sparsity May Cry” Benchmark (SMC-Bench), a collection of carefully-curated 4 diverse tasks with 10 datasets, that accounts for capturing a wide range of domain-specific and sophisticated knowledge. Our systemic evaluation of the most representative sparse algorithms reveals an important obscured observation: the state-of-the-art magnitude- and/or gradient-based sparse algorithms seemingly fail to perform on SMC-Bench when applied out-of-the-box, sometimes at significantly trivial sparsity as low as 5%. The observations seek the immediate attention of the sparsity research community to reconsider the highly proclaimed benefits of SNNs. We further conduct a thorough investigation into the reasons for the failure of common SNNs. Our analysis points out that such failure is intimately related to the “lazy regime” of large model training, which hints us with stronger pruning recipes that alleviate the failure on SMC-Bench (though still more or less suffering). By incorporating these well-thought and diverse tasks, SMC-Bench is designed to favor and encourage the development of more scalable and generalizable sparse algorithms. We open-source SMC-Bench to assist researchers in building next-generation sparse algorithms that scale and generalize: https://github.com/VITA-Group/SMC-Bench.


In-Person Poster presentation / top 25% paper
#50
Neural Networks and the Chomsky Hierarchy

Gregoire Deletang · Anian Ruoss · Jordi Grau-Moya · Tim Genewein · Li Kevin Wenliang · Elliot Catt · Chris Cundy · Marcus Hutter · Shane Legg · Joel Veness · Pedro Ortega

Reliable generalization lies at the heart of safe ML and AI. However, understanding when and how neural networks generalize remains one of the most important unsolved problems in the field. In this work, we conduct an extensive empirical study (20'910 models, 15 tasks) to investigate whether insights from the theory of computation can predict the limits of neural network generalization in practice. We demonstrate that grouping tasks according to the Chomsky hierarchy allows us to forecast whether certain architectures will be able to generalize to out-of-distribution inputs. This includes negative results where even extensive amounts of data and training time never lead to any non-trivial generalization, despite models having sufficient capacity to fit the training data perfectly. Our results show that, for our subset of tasks, RNNs and Transformers fail to generalize on non-regular tasks, LSTMs can solve regular and counter-language tasks, and only networks augmented with structured memory (such as a stack or memory tape) can successfully generalize on context-free and context-sensitive tasks.


In-Person Poster presentation / poster accept
#30
Mega: Moving Average Equipped Gated Attention

Xuezhe Ma · Chunting Zhou · Xiang Kong · Junxian He · Liangke Gui · Graham Neubig · Jonathan May · Luke Zettlemoyer

The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models.


In-Person Poster presentation / top 25% paper
#49
Fisher-Legendre (FishLeg) optimization of deep neural networks

Jezabel R. Garcia · Federica Freddi · Stathi Fotiadis · Maolin Li · Sattar Vakili · Alberto Bernacchia · Guillaume Hennequin

Incorporating second-order gradient information (curvature) into optimization can dramatically reduce the number of iterations required to train machine learning models. In natural gradient descent, such information comes from the Fisher information matrix which yields a number of desirable properties. As exact natural gradient updates are intractable for large models, successful methods such as KFAC and sequels approximate the Fisher in a structured form that can easily be inverted. However, this requires model/layer-specific tensor algebra and certain approximations that are often difficult to justify. Here, we use ideas from Legendre-Fenchel duality to learn a direct and efficiently evaluated model for the product of the inverse Fisher with any vector, in an online manner, leading to natural gradient steps that get progressively more accurate over time despite noisy gradients. We prove that the resulting “Fisher-Legendre” (FishLeg) optimizer converges to a (global) minimum of non-convex functions satisfying the PL condition, which applies in particular to deep linear networks. On standard auto-encoder benchmarks, we show empirically that FishLeg outperforms standard first-order optimization methods, and performs on par with or better than other second-order methods, especially when using small batches. Thanks to its generality, we expect our approach to facilitate the handling of a variety neural network layers in future work.


In-Person Poster presentation / top 25% paper
#29
Meta-prediction Model for Distillation-Aware NAS on Unseen Datasets

Hayeon Lee · Sohyun An · Minseon Kim · Sung Ju Hwang

Distillation-aware Neural Architecture Search (DaNAS) aims to search for an optimal student architecture that obtains the best performance and/or efficiency when distilling the knowledge from a given teacher model. Previous DaNAS methods have mostly tackled the search for the neural architecture for fixed datasets and the teacher, which are not generalized well on a new task consisting of an unseen dataset and an unseen teacher, thus need to perform a costly search for any new combination of the datasets and the teachers. For standard NAS tasks without KD, meta-learning-based computationally efficient NAS methods have been proposed, which learn the generalized search process over multiple tasks (datasets) and transfer the knowledge obtained over those tasks to a new task. However, since they assume learning from scratch without KD from a teacher, they might not be ideal for DaNAS scenarios. To eliminate the excessive computational cost of DaNAS methods and the sub-optimality of rapid NAS methods, we propose a distillation-aware meta-accuracy prediction model, DaSS (Distillation-aware Student Search), which can predict a given architecture's final performances on a dataset when performing KD with a given teacher, without having actually to train it on the target task. The experimental results demonstrate that our proposed meta-prediction model successfully generalizes to multiple unseen datasets for DaNAS tasks, largely outperforming existing meta-NAS methods and rapid NAS baselines. Code is available at https://github.com/CownowAn/DaSS.


In-Person Poster presentation / poster accept
#48
Can discrete information extraction prompts generalize across language models?

Nathanaël Carraz Rakotonirina · Roberto Dessi · Fabio Petroni · Sebastian Riedel · Marco Baroni

We study whether automatically-induced prompts that effectively extract information from a language model can also be used, out-of-the-box, to probe other language models for the same information. After confirming that discrete prompts induced with the AutoPrompt algorithm outperform manual and semi-manual prompts on the slot-filling task, we demonstrate a drop in performance for AutoPrompt prompts learned on a model and tested on another. We introduce a way to induce prompts by mixing language models at training time that results in prompts that generalize well across models. We conduct an extensive analysis of the induced prompts, finding that the more general prompts include a larger proportion of existing English words and have a less order-dependent and more uniform distribution of information across their component tokens. Our work provides preliminary evidence that it's possible to generate discrete prompts that can be induced once and used with a number of different models, and gives insights on the properties characterizing such prompts.


In-Person Poster presentation / top 5% paper
#28
Token Merging: Your ViT But Faster

Daniel Bolya · Cheng-Yang Fu · Xiaoliang Dai · Peizhao Zhang · Christoph Feichtenhofer · Judy Hoffman

We introduce Token Merging (ToMe), a simple method to increase the throughput of existing ViT models without needing to train. ToMe gradually combines similar tokens in a transformer using a general and light-weight matching algorithm that is as fast as pruning while being more accurate. Off-the-shelf, ToMe can 2x the throughput of state-of-the-art ViT-L @ 512 and ViT-H @ 518 models on images and 2.2x the throughput of ViT-L on video with only a 0.2-0.3% accuracy drop in each case. ToMe can also easily be applied during training, improving in practice training speed up to 2x for MAE fine-tuning on video. Training with ToMe further minimizes accuracy drop, leading to 2x the throughput of ViT-B on audio for only a 0.4% mAP drop. Qualitatively, we find that ToMe merges object parts into one token, even over multiple frames of video. Overall, ToMe’s accuracy and speed are competitive with state-of-the-art on images, video, and audio.


In-Person Poster presentation / poster accept
#47
How Informative is the Approximation Error from Tensor Decomposition for Neural Network Compression?

Jetze Schuurmans · kim batselier · Julian Kooij

Tensor decompositions have been successfully applied to compress neural networks. The compression algorithms using tensor decompositions commonly minimize the approximation error on the weights. Recent work assumes the approximation error on the weights is a proxy for the performance of the model to compress multiple layers and fine-tune the compressed model. Surprisingly, little research has systematically evaluated which approximation errors can be used to make choices regarding the layer, tensor decomposition method, and level of compression. To close this gap, we perform an experimental study to test if this assumption holds across different layers and types of decompositions, and what the effect of fine-tuning is. We include the approximation error on the features resulting from a compressed layer in our analysis to test if this provides a better proxy, as it explicitly takes the data into account. We find the approximation error on the weights has a positive correlation with the performance error, before as well as after fine-tuning. Basing the approximation error on the features does not improve the correlation significantly. While scaling the approximation error commonly is used to account for the different sizes of layers, the average correlation across layers is smaller than across all choices (i.e. layers, decompositions, and level of compression) before fine-tuning. When calculating the correlation across the different decompositions, the average rank correlation is larger than across all choices. This means multiple decompositions can be considered for compression and the approximation error can be used to choose between them.


In-Person Poster presentation / poster accept
#27
Broken Neural Scaling Laws

Ethan Caballero · Kshitij Gupta · Irina Rish · David Krueger

We present a smoothly broken power law functional form (referred to by us as a broken neural scaling law (BNSL)) that accurately models and extrapolates the scaling behaviors of deep neural networks (i.e. how the evaluation metric of interest varies as the amount of compute used for training, number of model parameters, training dataset size, or upstream performance varies) for various architectures and for each of various tasks within a large and diverse set of upstream and downstream tasks, in zero-shot, prompted, and fine-tuned settings. This set includes large-scale vision, language, audio, video, diffusion, generative modeling, multimodal learning, contrastive learning, AI alignment, robotics, out-of-distribution (OOD) generalization, continual learning, uncertainty estimation / calibration, out-of-distribution detection, adversarial robustness, molecules, computer programming/coding, math word problems, arithmetic, unsupervised/self-supervised learning, and reinforcement learning (single agent and multi-agent). When compared to other functional forms for neural scaling behavior, this functional form yields extrapolations of scaling behavior that are considerably more accurate on this set. Moreover, this functional form accurately models and extrapolates scaling behavior that other functional forms are incapable of expressing such as the non-monotonic transitions present in the scaling behavior of phenomena such as double descent and the delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Lastly, we use this functional form to glean insights about the limit of the predictability of scaling behavior. See arXiv for longer version of this paper. Code is available at https://github.com/ethancaballero/brokenneuralscaling_laws


In-Person Poster presentation / poster accept
#46
Softened Symbol Grounding for Neuro-symbolic Systems

Zenan Li · Yuan Yao · Taolue Chen · Jingwei Xu · Chun Cao · Xiaoxing Ma · Jian Lu

Neuro-symbolic learning generally consists of two separated worlds, i.e., neural network training and symbolic constraint solving, whose success hinges on symbol grounding, a fundamental problem in AI. This paper presents a novel, softened symbol grounding process, bridging the gap between the two worlds, and resulting in an effective and efficient neuro-symbolic learning framework. Technically, the framework features (1) modeling of symbol solution states as a Boltzmann distribution, which avoids expensive state searching and facilitates mutually beneficial interactions between network training and symbolic reasoning; (2) a new MCMC technique leveraging projection and SMT solvers, which efficiently samples from disconnected symbol solution spaces; (3) an annealing mechanism that can escape from sub-optimal symbol groundings. Experiments with three representative neuro-symbolic learning tasks demonstrate that, owing to its superior symbol grounding capability, our framework successfully solves problems well beyond the frontier of the existing proposals.


In-Person Poster presentation / poster accept
#45
Continuous-time identification of dynamic state-space models by deep subspace encoding

Gerben Izaak Beintema · Maarten Schoukens · Roland Toth

Continuous-time (CT) modeling has proven to provide improved sample efficiency and interpretability in learning the dynamical behavior of physical systems compared to discrete-time (DT) models. However, even with numerous recent developments, the CT nonlinear state-space (NL-SS) model identification problem remains to be solved in full, considering common experimental aspects such as the presence of external inputs, measurement noise, latent states, and general robustness. This paper presents a novel estimation method that addresses all these aspects and that can obtain state-of-the-art results on multiple benchmarks with compact fully connected neural networks capturing the CT dynamics. The proposed estimation method called the subspace encoder approach (SUBNET) ascertains these results by efficiently approximating the complete simulation loss by evaluating short simulations on subsections of the data, by using an encoder function to estimate the initial state for each subsection and a novel state-derivative normalization to ensure stability and good numerical conditioning of the training process. We prove that the use of subsections increases cost function smoothness together with the necessary requirements for the existence of the encoder function and we show that the proposed state-derivative normalization is essential for reliable estimation of CT NL-SS models.


In-Person Poster presentation / top 25% paper
#25
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second

Noah Hollmann · Samuel Müller · Katharina Eggensperger · Frank Hutter

We present TabPFN, a trained Transformer that can do supervised classification for small tabular datasets in less than a second, needs no hyperparameter tuning and is competitive with state-of-the-art classification methods.TabPFN is fully entailed in the weights of our network, which accepts training and test samples as a set-valued input and yields predictions for the entire test set in a single forward pass.TabPFN is a Prior-Data Fitted Network (PFN) and is trained offline once, to approximate Bayesian inference on synthetic datasets drawn from our prior.This prior incorporates ideas from causal reasoning: It entails a large space of structural causal models with a preference for simple structures.On the $18$ datasets in the OpenML-CC18 suite that contain up to 1000 training data points, up to 100 purely numerical features without missing values, and up to 10 classes, we show that our method clearly outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with up to $230\times$ speedup.This increases to a $5\,700\times$ speedup when using a GPU. We also validate these results on an additional 67 small numerical datasets from OpenML.We provide all our code, the trained TabPFN, an interactive browser demo and a Colab notebook at https://github.com/automl/TabPFN.


In-Person Poster presentation / poster accept
#44
A VAE for Transformers with Nonparametric Variational Information Bottleneck

James Henderson · Fabio Fehr

We propose a Variational AutoEncoder (VAE) for Transformers by developing a Variational Information Bottleneck (VIB) regulariser for Transformer embeddings. We formalise such attention-based representations as mixture distributions, and use Bayesian nonparametrics to develop a Nonparametric VIB (NVIB) for them. The variable number of mixture components supported by nonparametrics captures the variable number of vectors supported by attention, and exchangeable distributions from nonparametrics capture the permutation invariance of attention. Our Transformer VAE (NVAE) uses NVIB to regularise the information passing from the Transformer encoder to the Transformer decoder. Evaluations of a NVAE, trained on natural language text, demonstrate that NVIB can regularise the number of mixture components in the induced embedding whilst maintaining generation quality and reconstruction capacity.


In-Person Poster presentation / poster accept
#24
Cross-Layer Retrospective Retrieving via Layer Attention

Yanwen Fang · Yuxi Cai · Jintai Chen · Jingyu Zhao · Guangjian Tian · Guodong Li

More and more evidence has shown that strengthening layer interactions can enhance the representation power of a deep neural network, while self-attention excels at learning interdependencies by retrieving query-activated information. Motivated by this, we devise a cross-layer attention mechanism, called multi-head recurrent layer attention (MRLA), that sends a query representation of the current layer to all previous layers to retrieve query-related information from different levels of receptive fields. A light-weighted version of MRLA is also proposed to reduce the quadratic computation cost. The proposed layer attention mechanism can enrich the representation power of many state-of-the-art vision networks, including CNNs and vision transformers. Its effectiveness has been extensively evaluated in image classification, object detection and instance segmentation tasks, where improvements can be consistently observed. For example, our MRLA can improve 1.6% Top-1 accuracy on ResNet-50, while only introducing 0.16M parameters and 0.07B FLOPs. Surprisingly, it can boost the performances by a large margin of 3-4% box AP and mask AP in dense prediction tasks. Our code is available at https://github.com/joyfang1106/MRLA.


In-Person Poster presentation / poster accept
#43
Avoiding spurious correlations via logit correction

Sheng Liu · Xu Zhang · Nitesh Sekhar · Yue Wu · Prateek Singhal · Carlos Fernandez-Granda

Empirical studies suggest that machine learning models trained with empirical risk minimization (ERM) often rely on attributes that may be spuriously correlated with the class labels. Such models typically lead to poor performance during inference for data lacking such correlations. In this work, we explicitly consider a situation where potential spurious correlations are present in the majority of training data. In contrast with existing approaches, which use the ERM model outputs to detect the samples without spurious correlations and either heuristically upweight or upsample those samples, we propose the logit correction (LC) loss, a simple yet effective improvement on the softmax cross-entropy loss, to correct the sample logit. We demonstrate that minimizing the LC loss is equivalent to maximizing the group-balanced accuracy, so the proposed LC could mitigate the negative impacts of spurious correlations. Our extensive experimental results further reveal that the proposed LC loss outperforms state-of-the-art solutions on multiple popular benchmarks by a large margin, an average 5.5% absolute improvement, without access to spurious attribute labels. LC is also competitive with oracle methods that make use of the attribute labels.


In-Person Poster presentation / poster accept
#23
Mitigating Dataset Bias by Using Per-Sample Gradient

Sumyeong Ahn · SeongYoon Kim · Se-Young Yun

The performance of deep neural networks is strongly influenced by the training dataset setup. In particular, when attributes with a strong correlation with the target attribute are present, the trained model can provide unintended prejudgments and show significant inference errors (i.e., the dataset bias problem). Various methods have been proposed to mitigate dataset bias, and their emphasis is on weakly correlated samples, called bias-conflicting samples. These methods are based on explicit bias labels provided by humans. However, such methods require human costs. Recently, several studies have sought to reduce human intervention by utilizing the output space values of neural networks, such as feature space, logits, loss, or accuracy. However, these output space values may be insufficient for the model to understand the bias attributes well. In this study, we propose a debiasing algorithm leveraging gradient called Per-sample Gradient-based Debiasing (PGD). PGD is comprised of three steps: (1) training a model on uniform batch sampling, (2) setting the importance of each sample in proportion to the norm of the sample gradient, and (3) training the model using importance-batch sampling, whose probability is obtained in step (2). Compared with existing baselines for various datasets, the proposed method showed state-of-the-art accuracy for the classification task. Furthermore, we describe theoretical understandings of how PGD can mitigate dataset bias.


In-Person Poster presentation / poster accept
#42
Test-Time Adaptation via Self-Training with Nearest Neighbor Information

Minguk Jang · Sae-Young Chung · Hye Won Chung

Test-time adaptation (TTA) aims to adapt a trained classifier using online unlabeled test data only, without any information related to the training procedure. Most existing TTA methods adapt the trained classifier using the classifier's prediction on the test data as pseudo-label.However, under test-time domain shift, accuracy of the pseudo labels cannot be guaranteed, and thus the TTA methods often encounter performance degradation at the adapted classifier. To overcome this limitation, we propose a novel test-time adaptation method, called Test-time Adaptation via Self-Training with nearest neighbor information (TAST), which is composed of the following procedures: (1) adds trainable adaptation modules on top of the trained feature extractor; (2) newly defines a pseudo-label distribution for the test data by using the nearest neighbor information; (3) trains these modules only a few times during test time to match the nearest neighbor-based pseudo label distribution and a prototype-based class distribution for the test data; and (4) predicts the label of test data using the average predicted class distribution from these modules. The pseudo-label generation is based on the basic intuition that a test data and its nearest neighbor in the embedding space are likely to share the same label under the domain shift. By utilizing multiple randomly initialized adaptation modules, TAST extracts useful information for the classification of the test data under the domain shift, using the nearest neighbor information. TAST showed better performance than the state-of-the-art TTA methods on two standard benchmark tasks, domain generalization, namely VLCS, PACS, OfficeHome, and TerraIncognita, and image corruption, particularly CIFAR-10/100C.


In-Person Poster presentation / poster accept
#22
LPT: Long-tailed Prompt Tuning for Image Classification

Bowen Dong · Pan Zhou · shuicheng YAN · Wangmeng Zuo

For long-tailed classification tasks, most works often pretrain a big model on a large-scale (unlabeled) dataset, and then fine-tune the whole pretrained model for adapting to long-tailed data. Though promising, fine-tuning the whole pretrained model tends to suffer from high cost in computation and deployment of different models for different tasks, as well as weakened generalization capability for overfitting to certain features of long-tailed data. To alleviate these issues, we propose an effective Long-tailed Prompt Tuning (LPT) method for long-tailed classification tasks. LPT introduces several trainable prompts into a frozen pretrained model to adapt it to long-tailed data. For better effectiveness, we divide prompts into two groups: 1) a shared prompt for the whole long-tailed dataset to learn general features and to adapt a pretrained model into the target long-tailed domain; and 2) group-specific prompts to gather group-specific features for the samples which have similar features and also to empower the pretrained model with fine-grained discrimination ability. Then we design a two-phase training paradigm to learn these prompts. In the first phase, we train the shared prompt via conventional supervised prompt tuning to adapt a pretrained model to the desired long-tailed domain. In the second phase, we use the learnt shared prompt as query to select a small best matched set for a group of similar samples from the group-specific prompt set to dig the common features of these similar samples, and then optimize these prompts with a dual sampling strategy and the asymmetric Gaussian Clouded Logit loss. By only fine-tuning a few prompts while fixing the pretrained model, LPT can reduce training cost and deployment cost by storing a few prompts, and enjoys a strong generalization ability of the pretrained model. Experiments show that on various long-tailed benchmarks, with only $\sim$1.1\% extra trainable parameters, LPT achieves comparable or higher performance than previous whole model fine-tuning methods, and is more robust to domain-shift.


In-Person Poster presentation / top 25% paper
#21
Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization

Jivat Neet Kaur · Emre Kiciman · Amit Sharma

Recent empirical studies on domain generalization (DG) have shown that DG algorithms that perform well on some distribution shifts fail on others, and no state-of-the-art DG algorithm performs consistently well on all shifts. Moreover, real-world data often has multiple distribution shifts over different attributes; hence we introduce multi-attribute distribution shift datasets and find that the accuracy of existing DG algorithms falls even further. To explain these results, we provide a formal characterization of generalization under multi-attribute shifts using a canonical causal graph. Based on the relationship between spurious attributes and the classification label, we obtain realizations of the canonical causal graph that characterize common distribution shifts and show that each shift entails different independence constraints over observed variables. As a result, we prove that any algorithm based on a single, fixed constraint cannot work well across all shifts, providing theoretical evidence for mixed empirical results on DG algorithms. Based on this insight, we develop Causally Adaptive Constraint Minimization (CACM), an algorithm that uses knowledge about the data-generating process to adaptively identify and apply the correct independence constraints for regularization. Results on fully synthetic, MNIST, small NORB, and Waterbirds datasets, covering binary and multi-valued attributes and labels, show that adaptive dataset-dependent constraints lead to the highest accuracy on unseen domains whereas incorrect constraints fail to do so. Our results demonstrate the importance of modeling the causal relationships inherent in the data-generating process.


In-Person Poster presentation / top 25% paper
#40
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors

JIANFEI YANG · Xiangyu Peng · Kai Wang · Zheng Zhu · Jiashi Feng · Lihua Xie · Yang You

Domain Adaptation of Black-box Predictors (DABP) aims to learn a model on an unlabeled target domain supervised by a black-box predictor trained on a source domain. It does not require access to both the source-domain data and the predictor parameters, thus addressing the data privacy and portability issues of standard domain adaptation methods. Existing DABP approaches mostly rely on knowledge distillation (KD) from the black-box predictor, i.e., training the model with its noisy target-domain predictions, which however inevitably introduces the confirmation bias accumulated from the prediction noises and leads to degrading performance. To mitigate such bias, we propose a new strategy, \textit{divide-to-adapt}, that purifies cross-domain knowledge distillation by proper domain division. This is inspired by an observation we make for the first time in domain adaptation: the target domain usually contains easy-to-adapt and hard-to-adapt samples that have different levels of domain discrepancy w.r.t. the source domain, and deep models tend to fit easy-to-adapt samples first. Leveraging easy-to-adapt samples with less noise can help KD alleviate the negative effect of prediction noises from black-box predictors. In this sense, the target domain can be divided into an easy-to-adapt subdomain with less noise and a hard-to-adapt subdomain at the early stage of training. Then the adaptation is achieved by semi-supervised learning. We further reduce distribution discrepancy between subdomains and develop weak-strong augmentation strategy to filter the predictor errors progressively. As such, our method is a simple yet effective solution to reduce error accumulation in cross-domain knowledge distillation for DABP. Moreover, we prove that the target error of DABP is bounded by the noise ratio of two subdomains, i.e., the confirmation bias, which provides the theoretical justifications for our method. Extensive experiments demonstrate our method achieves state of the art on all DABP benchmarks, outperforming the existing best approach by 7.0\% on VisDA-17, and is even comparable with the standard domain adaptation methods that use the source-domain data.


In-Person Poster presentation / top 25% paper
#20
Continual Unsupervised Disentangling of Self-Organizing Representations

Zhiyuan Li · Xiajun Jiang · Ryan Missel · Prashnna Gyawali · Nilesh Kumar · Linwei Wang

Limited progress has been made in continual unsupervised learning of representations, especially in reusing, expanding, and continually disentangling learned semantic factors across data environments. We argue that this is because existing approaches treat continually-arrived data independently, without considering how they are related based on the underlying semantic factors. We address this by a new generative model describing a topologically-connected mixture of spike-and-slab distributions in the latent space, learned end-to-end in a continual fashion via principled variational inference. The learned mixture is able to automatically discover the active semantic factors underlying each data environment and to accumulate their relational structure based on that. This distilled knowledge of different data environments can further be used for generative replay and guiding continual disentangling of new semantic factors. We tested the presented method on a split version of 3DShapes to provide the first quantitative disentanglement evaluation of continually learned representations, and further demonstrated its ability to continually disentangle new representations in benchmark datasets.


In-Person Poster presentation / poster accept
#39
Editing models with task arithmetic

Gabriel Ilharco · Marco Tulio Ribeiro · Mitchell Wortsman · Ludwig Schmidt · Hannaneh Hajishirzi · Ali Farhadi

Changing how pre-trained models behave---e.g., improving their performance on a downstream task or mitigating biases learned during pre-training---is a common practice when developing machine learning systems. In this work, we propose a new paradigm for steering the behavior of neural networks, centered around task vectors. A task vector specifies a direction in the weight space of a pre-trained model, such that movement in that direction improves performance on the task. We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task. We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition, and the behavior of the resulting model is steered accordingly. Moreover, task vectors can be added together to improve performance on multiple tasks at once. Finally, when tasks are linked by an analogy relationship of the form ``A is to B as C is to D", combining task vectors from three of the tasks can improve performance on the fourth, even when no data from the fourth task is used for training.


In-Person Poster presentation / top 25% paper
#58
Learning Group Importance using the Differentiable Hypergeometric Distribution

Thomas Sutter · Laura Manduchi · Alain Ryser · Julia E Vogt

Partitioning a set of elements into subsets of a priori unknown sizes is essential in many applications. These subset sizes are rarely explicitly learned - be it the cluster sizes in clustering applications or the number of shared versus independent generative latent factors in weakly-supervised learning. Probability distributions over correct combinations of subset sizes are non-differentiable due to hard constraints, which prohibit gradient-based optimization. In this work, we propose the differentiable hypergeometric distribution. The hypergeometric distribution models the probability of different group sizes based on their relative importance. We introduce reparameterizable gradients to learn the importance between groups and highlight the advantage of explicitly learning the size of subsets in two typical applications: weakly-supervised learning and clustering. In both applications, we outperform previous approaches, which rely on suboptimal heuristics to model the unknown size of groups.


In-Person Poster presentation / poster accept
#77
TaskPrompter: Spatial-Channel Multi-Task Prompting for Dense Scene Understanding

Hanrong Ye · Dan Xu

Learning effective representations simultaneously from multiple tasks in a unified network framework is a fundamental paradigm for multi-task dense visual scene understanding. This requires joint modeling (i) task-generic and (ii) task-specific representations, and (iii) cross-task representation interactions. Existing works typically model these three perspectives with separately designed structures, using shared network modules for task-generic learning, different modules for task-specific learning, and establishing connections among these components for cross-task interactions. It is barely explored in the literature to model these three perspectives in each network layer in an end-to-end manner, which can not only minimize the effort of carefully designing empirical structures for the three multi-task representation learning objectives, but also greatly improve the representation learning capability of the multi-task network since all the model capacity will be used to optimize the three objectives together. In this paper, we propose TaskPrompter, a novel spatial-channel multi-task prompting transformer framework to achieve this target. Specifically, we design a set of spatial-channel task prompts and learn their spatial- and channel interactions with the shared image tokens in each transformer layer with attention mechanism, as aggregating spatial and channel information is critical for dense prediction tasks. Each task prompt learns task-specific representation for one task, while all the prompts can jointly contribute to the learning of the shared image token representations, and the interactions between different task prompts model the cross-task relationship. To decode dense predictions for multiple tasks with the learned spatial-channel task prompts from transformer, we accordingly design a dense task prompt decoding mechanism, which queries the shared image tokens using task prompts to obtain spatial- and channel-wise task-specific representations. Extensive experiments on two challenging multi-task dense scene understanding benchmarks (i.e. NYUD-V2 and PASCAL-Context) show the superiority of the proposed framework and TaskPrompter establishes significant state-of-the-art performances on multi-task dense predictions. Codes and models are made publicly available at https://github.com/prismformore/Multi-Task-Transformer.


In-Person Poster presentation / poster accept
#59
Towards Better Selective Classification

Leo Feng · Mohamed Osama Ahmed · Hossein Hajimirsadeghi · Amir Abdi

We tackle the problem of Selective Classification where the objective is to achieve the best performance on a predetermined ratio (coverage) of the dataset. Recent state-of-the-art selective methods come with architectural changes either via introducing a separate selection head or an extra abstention logit. In this paper, we challenge the aforementioned methods. The results suggest that the superior performance of state-of-the-art methods is owed to training a more generalizable classifier rather than their proposed selection mechanisms. We argue that the best performing selection mechanism should instead be rooted in the classifier itself. Our proposed selection strategy uses the classification scores and achieves better results by a significant margin, consistently, across all coverages and all datasets, without any added compute cost. Furthermore, inspired by semi-supervised learning, we propose an entropy-based regularizer that improves the performance of selective classification methods. Our proposed selection mechanism with the proposed entropy-based regularizer achieves new state-of-the-art results.


In-Person Poster presentation / poster accept
#78
Structure by Architecture: Structured Representations without Regularization

Felix Leeb · Giulia Lanzillotta · Yashas Annadani · michel besserve · Stefan Bauer · Bernhard Schoelkopf

We study the problem of self-supervised structured representation learning using autoencoders for downstream tasks such as generative modeling. Unlike most methods which rely on matching an arbitrary, relatively unstructured, prior distribution for sampling, we propose a sampling technique that relies solely on the independence of latent variables, thereby avoiding the trade-off between reconstruction quality and generative performance typically observed in VAEs. We design a novel autoencoder architecture capable of learning a structured representation without the need for aggressive regularization. Our structural decoders learn a hierarchy of latent variables, thereby ordering the information without any additional regularization or supervision. We demonstrate how these models learn a representation that improves results in a variety of downstream tasks including generation, disentanglement, and extrapolation using several challenging and natural image datasets.


In-Person Poster presentation / top 5% paper
#79
Learning on Large-scale Text-attributed Graphs via Variational Inference

Jianan Zhao · Meng Qu · Chaozhuo Li · Hao Yan · Qian Liu · Rui Li · Xing Xie · Jian Tang

This paper studies learning on text-attributed graphs (TAGs), where each node is associated with a text description. An ideal solution for such a problem would be integrating both the text and graph structure information with large language models and graph neural networks (GNNs). However, the problem becomes very challenging when graphs are large due to the high computational complexity brought by training large language models and GNNs together. In this paper, we propose an efficient and effective solution to learning on large text-attributed graphs by fusing graph structure and language learning with a variational Expectation-Maximization (EM) framework, called GLEM. Instead of simultaneously training large language models and GNNs on big graphs, GLEM proposes to alternatively update the two modules in the E-step and M-step. Such a procedure allows training the two modules separately while simultaneously allowing the two modules to interact and mutually enhance each other. Extensive experiments on multiple data sets demonstrate the efficiency and effectiveness of the proposed approach.


In-Person Poster presentation / poster accept
#61
Deep Declarative Dynamic Time Warping for End-to-End Learning of Alignment Paths

Ming Xu · Sourav Garg · Michael Milford · Stephen Gould

This paper addresses learning end-to-end models for time series data that include a temporal alignment step via dynamic time warping (DTW). Existing approaches to differentiable DTW either differentiate through a fixed warping path or apply a differentiable relaxation to the min operator found in the recursive steps used to solve the DTW problem. We instead propose a DTW layer based around bi-level optimisation and deep declarative networks, which we name DecDTW. By formulating DTW as a continuous, inequality constrained optimisation problem, we can compute gradients for the solution of the optimal alignment (with respect to the underlying time series) using implicit differentiation. An interesting byproduct of this formulation is that DecDTW outputs the optimal warping path between two time series as opposed to a soft approximation, recoverable from Soft-DTW. We show that this property is particularly useful for applications where downstream loss functions are defined on the optimal alignment path itself. This naturally occurs, for instance, when learning to improve the accuracy of predicted alignments against ground truth alignments. We evaluate DecDTW on two such applications, namely the audio-to-score alignment task in music information retrieval and the visual place recognition task in robotics, demonstrating state-of-the-art results in both.


In-Person Poster presentation / poster accept
#72
Interpretable Debiasing of Vectorized Language Representations with Iterative Orthogonalization

Prince Aboagye · Yan Zheng · Jack Shunn · Chin-Chia Michael Yeh · Junpeng Wang · Zhongfang Zhuang · Huiyuan Chen · Liang Wang · Wei Zhang · Jeff Phillips

We propose a new mechanism to augment a word vector embedding representation that offers improved bias removal while retaining the key information—resulting in improved interpretability of the representation. Rather than removing the information associated with a concept that may induce bias, our proposed method identifies two concept subspaces and makes them orthogonal. The resulting representation has these two concepts uncorrelated. Moreover, because they are orthogonal, one can simply apply a rotation on the basis of the representation so that the resulting subspace corresponds with coordinates. This explicit encoding of concepts to coordinates works because they have been made fully orthogonal, which previous approaches do not achieve. Furthermore, we show that this can be extended to multiple subspaces. As a result, one can choose a subset of concepts to be represented transparently and explicitly, while the others are retained in the mixed but extremely expressive format of the representation.


In-Person Poster presentation / top 25% paper
#80
NeRN: Learning Neural Representations for Neural Networks

Maor Ashkenazi · Zohar Rimon · Ron Vainshtein · Shir Levi · Elad Richardson · Pinchas Mintz · Eran Treister

Neural Representations have recently been shown to effectively reconstruct a wide range of signals from 3D meshes and shapes to images and videos. We show that, when adapted correctly, neural representations can be used to directly represent the weights of a pre-trained convolutional neural network, resulting in a Neural Representation for Neural Networks (NeRN). Inspired by coordinate inputs of previous neural representation methods, we assign a coordinate to each convolutional kernel in our network based on its position in the architecture, and optimize a predictor network to map coordinates to their corresponding weights. Similarly to the spatial smoothness of visual scenes, we show that incorporating a smoothness constraint over the original network's weights aids NeRN towards a better reconstruction. In addition, since slight perturbations in pre-trained model weights can result in a considerable accuracy loss, we employ techniques from the field of knowledge distillation to stabilize the learning process. We demonstrate the effectiveness of NeRN in reconstructing widely used architectures on CIFAR-10, CIFAR-100, and ImageNet. Finally, we present two applications using NeRN, demonstrating the capabilities of the learned representations.


In-Person Poster presentation / poster accept
#62
Learning to Induce Causal Structure

Nan Rosemary Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Theophane Weber · Matthew Botvinick · Michael Mozer · Danilo Jimenez Rezende

The fundamental challenge in causal induction is to infer the underlying graph structure given observational and/or interventional data. Most existing causal induction algorithms operate by generating candidate graphs and evaluating them using either score-based methods (including continuous optimization) or independence tests. In our work, we instead treat the inference process as a black box and design a neural network architecture that learns the mapping from both observational and interventional data to graph structures via supervised training on synthetic graphs. The learned model generalizes to new synthetic graphs, is robust to train-test distribution shifts, and achieves state-of-the-art performance on naturalistic graphs for low sample complexity.


In-Person Poster presentation / poster accept
#81
On the Soft-Subnetwork for Few-Shot Class Incremental Learning

Haeyong Kang · Jaehong Yoon · Sultan Madjid · Sung Ju Hwang · Chang Yoo

Inspired by Regularized Lottery Ticket Hypothesis, which states that competitive smooth (non-binary) subnetworks exist within a dense network, we propose a few-shot class-incremental learning method referred to as Soft-SubNetworks (SoftNet). Our objective is to learn a sequence of sessions incrementally, where each session only includes a few training instances per class while preserving the knowledge of the previously learned ones. SoftNet jointly learns the model weights and adaptive non-binary soft masks at a base training session in which each mask consists of the major and minor subnetwork; the former aims to minimize catastrophic forgetting during training, and the latter aims to avoid overfitting to a few samples in each new training session. We provide comprehensive empirical validations demonstrating that our SoftNet effectively tackles the few-shot incremental learning problem by surpassing the performance of state-of-the-art baselines over benchmark datasets.


In-Person Poster presentation / poster accept
#63
Learning to reason over visual objects

Shanka Subhra Mondal · Taylor Webb · Jonathan Cohen

A core component of human intelligence is the ability to identify abstract patterns inherent in complex, high-dimensional perceptual data, as exemplified by visual reasoning tasks such as Raven’s Progressive Matrices (RPM). Motivated by the goal of designing AI systems with this capacity, recent work has focused on evaluating whether neural networks can learn to solve RPM-like problems. Previous work has generally found that strong performance on these problems requires the incorporation of inductive biases that are specific to the RPM problem format, raising the question of whether such models might be more broadly useful. Here, we investigated the extent to which a general-purpose mechanism for processing visual scenes in terms of objects might help promote abstract visual reasoning. We found that a simple model, consisting only of an object-centric encoder and a transformer reasoning module, achieved state-of-the-art results on both of two challenging RPM-like benchmarks (PGM and I-RAVEN), as well as a novel benchmark with greater visual complexity (CLEVR-Matrices). These results suggest that an inductive bias for object-centric processing may be a key component of abstract visual reasoning, obviating the need for problem-specific inductive biases.


In-Person Poster presentation / poster accept
#82
QAID: Question Answering Inspired Few-shot Intent Detection

Asaf Yehudai · Matan Vetzler · Yosi Mass · Koren Lazar · Doron Cohen · Boaz Carmeli

Intent detection with semantically similar fine-grained intents is a challenging task. To address it, we reformulate intent detection as a question-answering retrieval task by treating utterances and intent names as questions and answers. To that end, we utilize a question-answering retrieval architecture and adopt a two stages training schema with batch contrastive loss. In the pre-training stage, we improve query representations through self-supervised training. Then, in the fine-tuning stage, we increase contextualized token-level similarity scores between queries and answers from the same intent. Our results on three few-shot intent detection benchmarks achieve state-of-the-art performance.


In-Person Poster presentation / poster accept
#64
Contrastive Meta-Learning for Partially Observable Few-Shot Learning

Adam Jelley · Amos Storkey · Antreas Antoniou · Sam Devlin

Many contrastive and meta-learning approaches learn representations by identifying common features in multiple views. However, the formalism for these approaches generally assumes features to be shared across views to be captured coherently. We consider the problem of learning a unified representation from partial observations, where useful features may be present in only some of the views. We approach this through a probabilistic formalism enabling views to map to representations with different levels of uncertainty in different components; these views can then be integrated with one another through marginalisation over that uncertainty. Our approach, Partial Observation Experts Modelling (POEM), then enables us to meta-learn consistent representations from partial observations. We evaluate our approach on an adaptation of a comprehensive few-shot learning benchmark, Meta-Dataset, and demonstrate the benefits of POEM over other meta-learning methods at representation learning from partial observations. We further demonstrate the utility of POEM by meta-learning to represent an environment from partial views observed by an agent exploring the environment.


In-Person Poster presentation / poster accept
#83
Learning topology-preserving data representations

Ilya Trofimov · Daniil Cherniavskii · Eduard Tulchinskii · Nikita Balabin · Evgeny Burnaev · Serguei Barannikov

We propose a method for learning topology-preserving data representations (dimensionality reduction). The method aims to provide topological similarity between the data manifold and its latent representation via enforcing the similarity in topological features (clusters, loops, 2D voids, etc.) and their localization. The core of the method is the minimization of the Representation Topology Divergence (RTD) between original high-dimensional data and low-dimensional representation in latent space. RTD minimization provides closeness in topological features with strong theoretical guarantees. We develop a scheme for RTD differentiation and apply it as a loss term for the autoencoder. The proposed method "RTD-AE" better preserves the global structure and topology of the data manifold than state-of-the-art competitors as measured by linear correlation, triplet distance ranking accuracy, and Wasserstein distance between persistence barcodes.


In-Person Poster presentation / poster accept
#65
DAG Matters! GFlowNets Enhanced Explainer for Graph Neural Networks

Wenqian Li · Yinchuan Li · Zhigang Li · Jianye HAO · Yan Pang

Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over the years. Existing literature mainly focus on selecting a subgraph, through combinatorial optimization, to provide faithful explanations. However, the exponential size of candidate subgraphs limits the applicability of state-of-the-art methods to large-scale GNNs. We enhance on this through a different approach: by proposing a generative structure – GFlowNets-based GNN Explainer (GFlowExplainer), we turn the optimization problem into a step-by-step generative problem. Our GFlowExplainer aims to learn a policy that generates a distribution of subgraphs for which the probability of a subgraph is proportional to its’ reward. The proposed approach eliminates the influence of node sequence and thus does not need any pre-training strategies. We also propose a new cut vertex matrix to efficiently explore parent states for GFlowNets structure, thus making our approach applicable in a large-scale setting. We conduct extensive experiments on both synthetic and real datasets, and both qualitative and quantitative results show the superiority of our GFlowExplainer.


In-Person Poster presentation / poster accept
#84
Distributed Extra-gradient with Optimal Complexity and Communication Guarantees

Ali Ramezani-Kebrya · Kimon Antonakopoulos · Igor Krawczuk · Justin Deschenaux · Volkan Cevher

We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local stochastic dual vectors. This setting includes a broad range of important problems from distributed convex minimization to min-max and games. Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient. To this end, we propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs. We provide an adaptive step-size rule, which adapts to the respective noise profiles at hand and achieve a fast rate of ${\cal O}(1/T)$ under relative noise, and an order-optimal ${\cal O}(1/\sqrt{T})$ under absolute noise and show distributed training accelerates convergence. Finally, we validate our theoretical results by providing real-world experiments and training generative adversarial networks on multiple GPUs.


In-Person Poster presentation / poster accept
#66
Unsupervised Manifold Alignment with Joint Multidimensional Scaling

Dexiong Chen · Bowen Fan · Carlos Oliver · Karsten Borgwardt

We introduce Joint Multidimensional Scaling, a novel approach for unsupervised manifold alignment, which maps datasets from two different domains, without any known correspondences between data instances across the datasets, to a common low-dimensional Euclidean space. Our approach integrates Multidimensional Scaling (MDS) and Wasserstein Procrustes analysis into a joint optimization problem to simultaneously generate isometric embeddings of data and learn correspondences between instances from two different datasets, while only requiring intra-dataset pairwise dissimilarities as input. This unique characteristic makes our approach applicable to datasets without access to the input features, such as solving the inexact graph matching problem. We propose an alternating optimization scheme to solve the problem that can fully benefit from the optimization techniques for MDS and Wasserstein Procrustes. We demonstrate the effectiveness of our approach in several applications, including joint visualization of two datasets, unsupervised heterogeneous domain adaptation, graph matching, and protein structure alignment. The implementation of our work is available at https://github.com/BorgwardtLab/JointMDS.


In-Person Poster presentation / poster accept
#85
Deconstructing Distributions: A Pointwise Framework of Learning

Gal Kaplun · Nikhil Ghosh · Saurabh Garg · Boaz Barak · Preetum Nakkiran

In machine learning, we traditionally evaluate the performance of a single model, averaged over a collection of test inputs. In this work, we propose a new approach: we measure the performance of a collection of models when evaluated at single input point. Specifically, we study a point's profile: the relationship between models' average performance on the test distribution and their pointwise performance on this individual point. We find that profiles can yield new insights into the structure of both models and data---in and out-of-distribution. For example, we empirically show that real data distributions consist of points with qualitatively different profiles. On one hand, there are compatible'' points with strong correlation between the pointwise and average performance. On the other hand, there are points with weak and even *negative* correlation: cases where improving overall model accuracy actually *hurts* performance on these inputs. As an application, we use profiles to construct a dataset we call CIFAR-10-NEG: a subset of CINIC-10 such that for standard models, accuracy on CIFAR-10-NEG is *negatively correlated* with CIFAR-10 accuracy. Illustrating for the first time an OOD dataset that completely invertsaccuracy-on-the-line'' (Miller et al., 2021).


In-Person Poster presentation / poster accept
#67
Neural Agents Struggle to Take Turns in Bidirectional Emergent Communication

Valentin Taillandier · Dieuwke Hupkes · Benoît Sagot · Emmanuel Dupoux · Paul Michel

The spontaneous exchange of turns is a central aspect of human communication. Although turn-taking conventions come to us naturally, artificial dialogue agents struggle to coordinate, and must rely on hard-coded rules to engage in interactive conversations with human interlocutors. In this paper, we investigate the conditions under which artificial agents may naturally develop turn-taking conventions in a simple language game. We describe a cooperative task where success is contingent on the exchange of information along a shared communication channel where talking over each other hinders communication. Despite these environmental constraints, neural-network based agents trained to solve this task with reinforcement learning do not systematically adopt turn-taking conventions. However, we find that agents that do agree on turn-taking protocols end up performing better. Moreover, agents that are forced to perform turn-taking can learn to solve the task more quickly. This suggests that turn-taking may help to generate conversations that are easier for speakers to interpret.


In-Person Poster presentation / poster accept
#68
PandA: Unsupervised Learning of Parts and Appearances in the Feature Maps of GANs

James Oldfield · Christos Tzelepis · Yannis Panagakis · Mihalis Nicolaou · Ioannis Patras

Recent advances in the understanding of Generative Adversarial Networks (GANs) have led to remarkable progress in visual editing and synthesis tasks, capitalizing on the rich semantics that are embedded in the latent spaces of pre-trained GANs. However, existing methods are often tailored to specific GAN architectures and are limited to either discovering global semantic directions that do not facilitate localized control, or require some form of supervision through manually provided regions or segmentation masks. In this light, we present an architecture-agnostic approach that jointly discovers factors representing spatial parts and their appearances in an entirely unsupervised fashion. These factors are obtained by applying a semi-nonnegative tensor factorization on the feature maps, which in turn enables context-aware local image editing with pixel-level control. In addition, we show that the discovered appearance factors correspond to saliency maps that localize concepts of interest, without using any labels. Experiments on a wide range of GAN architectures and datasets show that, in comparison to the state of the art, our method is far more efficient in terms of training time and, most importantly, provides much more accurate localized control. Our code is available at: https://github.com/james-oldfield/PandA.


In-Person Poster presentation / poster accept
#87
Diffusion-based Image Translation using disentangled style and content representation

Gihyun Kwon · Jong Ye

Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer which is not limited to the specific domains. Unfortunately, due to the stochastic nature of diffusion models, it is often difficult to maintain the original content of the image during the reverse diffusion.To address this, here we present a novel diffusion-based unsupervised image translation method, dubbed as DiffuseIT, using disentangled style and content representation. Specifically, inspired by the slicing Vision Transformer, we extract intermediate keys of multihead self attention layer from ViT model and used them as the content preservation loss. Then, an image guided style transfer is performed by matching the [CLS] classification token from the denoised samples and target image, whereas additional CLIP loss is used for the text-driven style transfer. To further accelerate the semantic change during the reverse diffusion, we also propose a novel semantic divergence loss and resampling strategy. Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.


In-Person Poster presentation / poster accept
#69
Finding the Global Semantic Representation in GAN through Fréchet Mean

Jaewoong Choi · Geonho Hwang · Hyunsoo Cho · Myungjoo Kang

The ideally disentangled latent space in GAN involves the global representation of latent space using semantic attribute coordinates. In other words, in this disentangled space, there exists the global semantic basis as a vector space where each basis component describes one attribute of generated images. In this paper, we propose an unsupervised method for finding this global semantic basis in the intermediate latent space in GANs. This semantic basis represents sample-independent meaningful perturbations that change the same semantic attribute of an image on the entire latent space. The proposed global basis, called Fréchet basis, is derived by introducing Fréchet mean to the local semantic perturbations in a latent space. Fréchet basis is discovered in two stages. First, the global semantic subspace is discovered by the Fréchet mean in the Grassmannian manifold of the local semantic subspaces. Second, Fréchet basis is found by optimizing a basis of the semantic subspace via the Fréchet mean in the Special Orthogonal Group. Experimental results demonstrate that Fréchet basis provides better semantic factorization and robustness compared to the previous methods. Moreover, we suggest the basis refinement scheme for the previous methods. The quantitative experiments show that the refined basis achieves better semantic factorization while constrained on the same semantic subspace given by the previous method.


In-Person Poster presentation / top 25% paper
#116
Domain Generalization via Heckman-type Selection Models

Hyungu Kahng · Hyungrok Do · Judy Zhong

The domain generalization (DG) setup considers the problem where models are trained on data sampled from multiple domains and evaluated on test domains unseen during training. In this paper, we formulate DG as a sample selection problem where each domain is sampled from a common underlying population through non-random sampling probabilities that correlate with both the features and the outcome. Under this setting, the fundamental iid assumption of the empirical risk minimization (ERM) is violated, so it often performs worse on test domains whose non-random sampling probabilities differ from the domains in the training dataset. We propose a Selection-Guided DG (SGDG) framework to learn the selection probability of each domain and the joint distribution of the outcome and domain selection variables. The proposed SGDG is domain generalizable as it intends to minimize the risk under the population distribution. We theoretically proved that, under certain regular conditions, SGDG can achieve smaller risk than ERM. Furthermore, we present a class of parametric SGDG (HeckmanDG) estimators applicable to continuous, binary, and multinomial outcomes. We also demonstrated its efficacy empirically through simulations and experiments on a set of benchmark datasets comparing with other well-known DG methods.


In-Person Poster presentation / poster accept
#88
Interaction-Based Disentanglement of Entities for Object-Centric World Models

Akihiro Nakano · Masahiro Suzuki · Yutaka Matsuo

Perceiving the world compositionally in terms of space and time is essential to understanding object dynamics and solving downstream tasks. Object-centric learning using generative models has improved in its ability to learn distinct representations of individual objects and predict their interactions, and how to utilize the learned representations to solve untrained, downstream tasks is a focal question. However, as models struggle to predict object interactions and track the objects accurately, especially for unseen configurations, using object-centric representations in downstream tasks is still a challenge. This paper proposes STEDIE, a new model that disentangles object representations, based on interactions, into interaction-relevant relational features and interaction-irrelevant global features without supervision. Empirical evaluation shows that the proposed model factorizes global features, unaffected by interactions from relational features that are necessary to predict outcome of interactions. We also show that STEDIE achieves better performance in planning tasks and understanding causal relationships. In both tasks, our model not only achieves better performance in terms of reconstruction ability but also utilizes the disentangled representations to solve the tasks in a structured manner.


In-Person Poster presentation / poster accept
#70
Matching receptor to odorant with protein language and graph neural networks

Matej Hladiš · Maxence Lalis · Sébastien Fiorucci · Jérémie Topin

Odor perception in mammals is triggered by interactions between volatile organic compounds and a subset of hundreds of proteins called olfactory receptors (ORs). Molecules activate these receptors in a complex combinatorial coding allowing mammals to discriminate a vast number of chemical stimuli. Recently, ORs have gained attention as new therapeutic targets following the discovery of their involvement in other physiological processes and diseases. To date, predicting molecule-induced activation for ORs is highly challenging since $43\%$ of ORs have no identified active compound. In this work, we combine [CLS] token from protBERT with a molecular graph and propose a tailored GNN architecture incorporating inductive biases from the protein-molecule binding. We abstract the biological process of protein-molecule activation as the injection of a molecule into a protein-specific environment. On a newly gathered dataset of $46$ $700$ OR-molecule pairs, this model outperforms state-of-the-art models on drug-target interaction prediction as well as standard GNN baselines. Moreover, by incorporating non-bonded interactions the model is able to work with mixtures of compounds. Finally, our predictions reveal a similar activation pattern for molecules within a given odor family, which is in agreement with the theory of combinatorial coding in olfaction.


In-Person Poster presentation / top 25% paper
#89
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs

Yi-Lun Liao · Tess Smidt

Despite their widespread success in various domains, Transformer networks have yet to perform well across datasets in the domain of 3D atomistic graphs such as molecules even when 3D-related inductive biases like translational invariance and rotational equivariance are considered. In this paper, we demonstrate that Transformers can generalize well to 3D atomistic graphs and present Equiformer, a graph neural network leveraging the strength of Transformer architectures and incorporating SE(3)/E(3)-equivariant features based on irreducible representations (irreps). First, we propose a simple and effective architecture by only replacing original operations in Transformers with their equivariant counterparts and including tensor products. Using equivariant operations enables encoding equivariant information in channels of irreps features without complicating graph structures. With minimal modifications to Transformers, this architecture has already achieved strong empirical results. Second, we propose a novel attention mechanism called equivariant graph attention, which improves upon typical attention in Transformers through replacing dot product attention with multi-layer perceptron attention and including non-linear message passing. With these two innovations, Equiformer achieves competitive results to previous models on QM9, MD17 and OC20 datasets.


In-Person Poster presentation / top 5% paper
#71
Compressing multidimensional weather and climate data into neural networks

Langwen Huang · Torsten Hoefler

Weather and climate simulations produce petabytes of high-resolution data that are later analyzed by researchers in order to understand climate change or severe weather. We propose a new method of compressing this multidimensional weather and climate data: a coordinate-based neural network is trained to overfit the data, and the resulting parameters are taken as a compact representation of the original grid-based data. While compression ratios range from 300x to more than 3,000x, our method outperforms the state-of-the-art compressor SZ3 in terms of weighted RMSE, MAE. It can faithfully preserve important large scale atmosphere structures and does not introduce significant artifacts.When using the resulting neural network as a 790x compressed dataloader to train the WeatherBench forecasting model, its RMSE increases by less than 2%. The three orders of magnitude compression democratizes access to high-resolution climate data and enables numerous new research directions.


In-Person Poster presentation / top 5% paper
#90
Honorable Mention
Conditional Antibody Design as 3D Equivariant Graph Translation

Xiangzhe Kong · Wenbing Huang · Yang Liu

Antibody design is valuable for therapeutic usage and biological research. Existing deep-learning-based methods encounter several key issues: 1) incomplete context for Complementarity-Determining Regions (CDRs) generation; 2) incapability of capturing the entire 3D geometry of the input structure; 3) inefficient prediction of the CDR sequences in an autoregressive manner. In this paper, we propose Multi-channel Equivariant Attention Network (MEAN) to co-design 1D sequences and 3D structures of CDRs. To be specific, MEAN formulates antibody design as a conditional graph translation problem by importing extra components including the target antigen and the light chain of the antibody. Then, MEAN resorts to E(3)-equivariant message passing along with a proposed attention mechanism to better capture the geometrical correlation between different components. Finally, it outputs both the 1D sequences and 3D structure via a multi-round progressive full-shot scheme, which enjoys more efficiency and precision against previous autoregressive approaches. Our method significantly surpasses state-of-the-art models in sequence and structure modeling, antigen-binding CDR design, and binding affinity optimization. Specifically, the relative improvement to baselines is about 23\% in antigen-binding CDR design and 34\% for affinity optimization.


In-Person Poster presentation / top 25% paper
#91
Phase2vec: dynamical systems embedding with a physics-informed convolutional network

Matt Ricci · Noa Moriel · Zoe Piran · Mor Nitzan

Dynamical systems are found in innumerable forms across the physical and biological sciences, yet all these systems fall naturally into equivalence classes: conservative or dissipative, stable or unstable, compressible or incompressible. Predicting these classes from data remains an essential open challenge in computational physics on which existing time-series classification methods struggle. Here, we propose, phase2vec, an embedding method that learns high-quality, physically-meaningful representations of low-dimensional dynamical systems without supervision. Our embeddings are produced by a convolutional backbone that extracts geometric features from flow data and minimizes a physically-informed vector field reconstruction loss. The trained architecture can not only predict the equations of unseen data, but also produces embeddings that encode meaningful physical properties of input data (e.g. stability of fixed points, conservation of energy, and the incompressibility of flows) more faithfully than standard blackbox classifiers and state-of-the-art time series classification techniques. We additionally apply our embeddings to the analysis of meteorological data, showing we can detect climatically meaningful features. Collectively, our results demonstrate the viability of embedding approaches for the discovery of dynamical features in physical systems.


In-Person Poster presentation / poster accept
#73
Protein Sequence and Structure Co-Design with Equivariant Translation

Chence Shi · Chuanrui Wang · Jiarui Lu · Bozitao Zhong · Jian Tang

Proteins are macromolecules that perform essential functions in all living organisms. Designing novel proteins with specific structures and desired functions has been a long-standing challenge in the field of bioengineering. Existing approaches generate both protein sequence and structure using either autoregressive models or diffusion models, both of which suffer from high inference costs. In this paper, we propose a new approach capable of protein sequence and structure co-design, which iteratively translates both protein sequence and structure into the desired state from random initialization, based on context features given a priori. Our model consists of a trigonometry-aware encoder that reasons geometrical constraints and interactions from context features, and a roto-translation equivariant decoder that translates protein sequence and structure interdependently. Notably, all protein amino acids are updated in one shot in each translation step, which significantly accelerates the inference process. Experimental results across multiple tasks show that our model outperforms previous state-of-the-art baselines by a large margin, and is able to design proteins of high fidelity as regards both sequence and structure, with running time orders of magnitude less than sampling-based methods.


In-Person Poster presentation / top 25% paper
#74
CROM: Continuous Reduced-Order Modeling of PDEs Using Implicit Neural Representations

Peter Yichen Chen · Jinxu Xiang · Dong Heon Cho · Yue Chang · G Pershing · Henrique Maia · Maurizio Chiaramonte · Kevin Carlberg · Eitan Grinspun

The long runtime of high-fidelity partial differential equation (PDE) solvers makes them unsuitable for time-critical applications. We propose to accelerate PDE solvers using reduced-order modeling (ROM). Whereas prior ROM approaches reduce the dimensionality of discretized vector fields, our continuous reduced-order modeling (CROM) approach builds a low-dimensional embedding of the continuous vector fields themselves, not their discretization. We represent this reduced manifold using continuously differentiable neural fields, which may train on any and all available numerical solutions of the continuous system, even when they are obtained using diverse methods or discretizations. We validate our approach on an extensive range of PDEs with training data from voxel grids, meshes, and point clouds. Compared to prior discretization-dependent ROM methods, such as linear subspace proper orthogonal decomposition (POD) and nonlinear manifold neural-network-based autoencoders, CROM features higher accuracy, lower memory consumption, dynamically adaptive resolutions, and applicability to any discretization. For equal latent space dimension, CROM exhibits 79$\times$ and 49$\times$ better accuracy, and 39$\times$ and 132$\times$ smaller memory footprint, than POD and autoencoder methods, respectively. Experiments demonstrate 109$\times$ and 89$\times$ wall-clock speedups over unreduced models on CPUs and GPUs, respectively. Videos and codes are available on the project page: https://crom-pde.github.io


In-Person Poster presentation / poster accept
#93
Interpretable Geometric Deep Learning via Learnable Randomness Injection

Siqi Miao · Yunan Luo · Mia Liu · Pan Li

Point cloud data is ubiquitous in scientific fields. Recently, geometric deep learning (GDL) has been widely applied to solve prediction tasks with such data. However, GDL models are often complicated and hardly interpretable, which poses concerns to scientists who are to deploy these models in scientific analysis and experiments. This work proposes a general mechanism, learnable randomness injection (LRI), which allows building inherently interpretable models based on general GDL backbones. LRI-induced models, once trained, can detect the points in the point cloud data that carry information indicative of the prediction label. We also propose four datasets from real scientific applications that cover the domains of high-energy physics and biochemistry to evaluate the LRI mechanism. Compared with previous post-hoc interpretation methods, the points detected by LRI align much better and stabler with the ground-truth patterns that have actual scientific meanings. LRI is grounded by the information bottleneck principle, and thus LRI-induced models are also more robust to distribution shifts between training and test scenarios. Our code and datasets are available at https://github.com/Graph-COM/LRI.


In-Person Poster presentation / poster accept
#94
Learning Cut Selection for Mixed-Integer Linear Programming via Hierarchical Sequence Model

Zhihai Wang · Xijun Li · Jie Wang · Yufei Kuang · Mingxuan Yuan · Jia Zeng · Yongdong Zhang · Feng Wu

Cutting planes (cuts) are important for solving mixed-integer linear programs (MILPs), which formulate a wide range of important real-world applications. Cut selection---which aims to select a proper subset of the candidate cuts to improve the efficiency of solving MILPs---heavily depends on (P1) which cuts should be preferred, and (P2) how many cuts should be selected. Although many modern MILP solvers tackle (P1)-(P2) by manually designed heuristics, machine learning offers a promising approach to learn more effective heuristics from MILPs collected from specific applications. However, many existing learning-based methods focus on learning which cuts should be preferred, neglecting the importance of learning the number of cuts that should be selected. Moreover, we observe from extensive empirical results that (P3) what order of selected cuts should be preferred has a significant impact on the efficiency of solving MILPs as well. To address this challenge, we propose a novel hierarchical sequence model (HEM) to learn cut selection policies via reinforcement learning. Specifically, HEM consists of a two-level model: (1) a higher-level model to learn the number of cuts that should be selected, (2) and a lower-level model---that formulates the cut selection task as a sequence to sequence learning problem---to learn policies selecting an ordered subset with the size determined by the higher-level model. To the best of our knowledge, HEM is the first method that can tackle (P1)-(P3) in cut selection simultaneously from a data-driven perspective. Experiments show that HEM significantly improves the efficiency of solving MILPs compared to human-designed and learning-based baselines on both synthetic and large-scale real-world MILPs, including MIPLIB 2017. Moreover, experiments demonstrate that HEM well generalizes to MILPs that are significantly larger than those seen during training.


In-Person Poster presentation / top 25% paper
#76
D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory

Tianbo Li · Min Lin · Zheyuan Hu · Kunhao Zheng · Giovanni Vignale · Kenji Kawaguchi · A. Castro Neto · Kostya Novoselov · shuicheng YAN

Kohn-Sham Density Functional Theory (KS-DFT) has been traditionally solved by the Self-Consistent Field (SCF) method. Behind the SCF loop is the physics intuition of solving a system of non-interactive single-electron wave functions under an effective potential. In this work, we propose a deep learning approach to KS-DFT. First, in contrast to the conventional SCF loop, we propose to directly minimize the total energy by reparameterizing the orthogonal constraint as a feed-forward computation. We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity from O(N^4) to O(N^3). Second, the numerical integration which involves a summation over the quadrature grids can be amortized to the optimization steps. At each step, stochastic gradient descent (SGD) is performed with a sampled minibatch of the grids. Extensive experiments are carried out to demonstrate the advantage of our approach in terms of efficiency and stability. In addition, we show that our approach enables us to explore more complex neural-based wave functions.


In-Person Poster presentation / poster accept
#95
Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles

Martin Bjerke · Lukas Schott · Kristopher Jensen · Claudia Battistin · David Klindt · Benjamin Dunn

Systems neuroscience relies on two complementary views of neural data, characterized by single neuron tuning curves and analysis of population activity. These two perspectives combine elegantly in neural latent variable models that constrain the relationship between latent variables and neural activity, modeled by simple tuning curve functions. This has recently been demonstrated using Gaussian processes, with applications to realistic and topologically relevant latent manifolds. Those and previous models, however, missed crucial shared coding properties of neural populations. We propose $\textit{feature sharing}$ across neural tuning curves which significantly improves performance and helps optimization. We also propose a solution to the $\textit{ensemble detection}$ problem, where different groups of neurons, i.e., ensembles, can be modulated by different latent manifolds. Achieved through a soft clustering of neurons during training, this allows for the separation of mixed neural populations in an unsupervised manner. These innovations lead to more interpretable models of neural population activity that train well and perform better even on mixtures of complex latent manifolds. Finally, we apply our method on a recently published grid cell dataset, and recover distinct ensembles, infer toroidal latents and predict neural tuning curves in a single integrated modeling framework.


In-Person Poster presentation / top 25% paper
#114
A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation

Edoardo Balzani · Jean-Paul Noel · Pedro Herrero-Vidal · Dora Angelaki · Cristina Savin

Latent manifolds provide a compact characterization of neural population activity and of shared co-variability across brain areas. Nonetheless, existing statistical tools for extracting neural manifolds face limitations in terms of interpretability of latents with respect to task variables, and can be hard to apply to datasets with no trial repeats. Here we propose a novel probabilistic framework that allows for interpretable partitioning of population variability within and across areas in the context of naturalistic behavior. Our approach for task aligned manifold estimation (TAME-GP) explicitly partitions variability into private and shared sources which can themselves be subdivided in task-relevant and task irrelevant components, uses a realistic Poisson noise model, and introduces temporal smoothing of latent trajectories in the form of a Gaussian Process prior. This TAME-GP graphical model allows for robust estimation of task-relevant variability in local population responses, and of shared co-variability between brain areas. We demonstrate the efficiency of our estimator on within model and biologically motivated simulated data. We also apply it to several datasets of neural population recordings during behavior. Overall, our results demonstrate the capacity of TAME-GP to capture meaningful intra- and inter-area neural variability with single trial resolution.


In-Person Poster presentation / poster accept
#133
How gradient estimator variance and bias impact learning in neural networks

Arna Ghosh · Yuhan Helena Liu · Guillaume Lajoie · Konrad P Kording · Blake A Richards

There is growing interest in understanding how real brains may approximate gradients and how gradients can be used to train neuromorphic chips. However, neither real brains nor neuromorphic chips can perfectly follow the loss gradient, so parameter updates would necessarily use gradient estimators that have some variance and/or bias. Therefore, there is a need to understand better how variance and bias in gradient estimators impact learning dependent on network and task properties. Here, we show that variance and bias can impair learning on the training data, but some degree of variance and bias in a gradient estimator can be beneficial for generalization. We find that the ideal amount of variance and bias in a gradient estimator are dependent on several properties of the network and task: the size and activity sparsity of the network, the norm of the gradient, and the curvature of the loss landscape. As such, whether considering biologically-plausible learning algorithms or algorithms for training neuromorphic chips, researchers can analyze these properties to determine whether their approximation to gradient descent will be effective for learning given their network and task properties.


In-Person Poster presentation / top 25% paper
#132
Hebbian Deep Learning Without Feedback

Adrien Journé · Hector Garcia Rodriguez · Qinghai Guo · Timoleon Moraitis

Recent approximations to backpropagation (BP) have mitigated many of BP's computational inefficiencies and incompatibilities with biology, but important limitations still remain. Moreover, the approximations significantly decrease accuracy in benchmarks, suggesting that an entirely different approach may be more fruitful. Here, grounded on recent theory for Hebbian learning in soft winner-take-all networks, we present multilayer SoftHebb, i.e. an algorithm that trains deep neural networks, without any feedback, target, or error signals. As a result, it achieves efficiency by avoiding weight transport, non-local plasticity, time-locking of layer updates, iterative equilibria, and (self-) supervisory or other feedback signals – which were necessary in other approaches. Its increased efficiency and biological compatibility do not trade off accuracy compared to state-of-the-art bio-plausible learning, but rather improve it. With up to five hidden layers and an added linear classifier, accuracies on MNIST, CIFAR-10, STL-10, and ImageNet, respectively reach 99.4%, 80.3%, 76.2%, and 27.3%. In conclusion, SoftHebb shows with a radically different approach from BP that Deep Learning over few layers may be plausible in the brain and increases the accuracy of bio-plausible machine learning. Code is available at https://github.com/NeuromorphicComputing/SoftHebb.


In-Person Poster presentation / top 25% paper
#112
Honorable Mention
Disentanglement with Biological Constraints: A Theory of Functional Cell Types

James Whittington · Will Dorrell · Surya Ganguli · Timothy Behrens

Neurons in the brain are often finely tuned for specific task variables. Moreover, such disentangled representations are highly sought after in machine learning. Here we mathematically prove that simple biological constraints on neurons, namely nonnegativity and energy efficiency in both activity and weights, promote such sought after disentangled representations by enforcing neurons to become selective for single factors of task variation. We demonstrate these constraints lead to disentanglement in a variety of tasks and architectures, including variational autoencoders. We also use this theory to explain why the brain partitions its cells into distinct cell types such as grid and object-vector cells, and also explain when the brain instead entangles representations in response to entangled task factors. Overall, this work provides a mathematical understanding of why single neurons in the brain often represent single human-interpretable factors, and steps towards an understanding task structure shapes the structure of brain representation.


In-Person Poster presentation / poster accept
#131
Multi-objective optimization via equivariant deep hypervolume approximation

Jim Boelrijk · Bernd Ensing · Patrick Forré

Optimizing multiple competing objectives is a common problem across science and industry. The inherent inextricable trade-off between those objectives leads one to the task of exploring their Pareto front. A meaningful quantity for the purpose of the latter is the hypervolume indicator, which is used in Bayesian Optimization (BO) and Evolutionary Algorithms (EAs). However, the computational complexity for the calculation of the hypervolume scales unfavorably with increasing number of objectives and data points, which restricts its use in those common multi-objective optimization frameworks. To overcome these restrictions, previous work has focused on approximating the hypervolume using deep learning. In this work, we propose a novel deep learning architecture to approximate the hypervolume function, which we call DeepHV. For better sample efficiency and generalization, we exploit the fact that the hypervolume is scale equivariant in each of the objectives as well as permutation invariant w.r.t. both the objectives and the samples, by using a deep neural network that is equivariant w.r.t. the combined group of scalings and permutations. We show through an ablation study that including these symmetries leads to significantly improved model accuracy. We evaluate our method against exact, and approximate hypervolume methods in terms of accuracy, computation time, and generalization. We also apply and compare our methods to state-of-the-art multi-objective BO methods and EAs on a range of synthetic and real-world benchmark test cases. The results show that our methods are promising for such multi-objective optimization tasks.


In-Person Poster presentation / poster accept
#111
Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal Attention, and Optimal Transport

Lingkai Kong · Yuqing Wang · Molei Tao

The problem of optimization on Stiefel manifold, i.e., minimizing functions of (not necessarily square) matrices that satisfy orthogonality constraints, has been extensively studied. Yet, a new approach is proposed based on, for the first time, an interplay between thoughtfully designed continuous and discrete dynamics. It leads to a gradient-based optimizer with intrinsically added momentum. This method exactly preserves the manifold structure but does not require additional operation to keep momentum in the changing (co)tangent space, and thus has low computational cost and pleasant accuracy. Its generalization to adaptive learning rates is also demonstrated. Notable performances are observed in practical tasks. For instance, we found that placing orthogonal constraints on attention heads of trained-from-scratch Vision Transformer (Dosovitskiy et al., 2020) could markedly improve its performance, when our optimizer is used, and it is better that each head is made orthogonal within itself but not necessarily to other heads. This optimizer also makes the useful notion of Projection Robust Wasserstein Distance (Paty and Cuturi, 2019; Lin et al., 2020) for high-dim. optimal transport even more effective.


In-Person Poster presentation / poster accept
#130
Why (and When) does Local SGD Generalize Better than SGD?

Xinran Gu · Kaifeng Lyu · Longbo Huang · Sanjeev Arora

Local SGD is a communication-efficient variant of SGD for large-scale training, where multiple GPUs perform SGD independently and average the model parameters periodically. It has been recently observed that Local SGD can not only achieve the design goal of reducing the communication overhead but also lead to higher test accuracy than the corresponding SGD baseline (Lin et al., 2020b), though the training regimes for this to happen are still in debate (Ortiz et al., 2021). This paper aims to understand why (and when) Local SGD generalizes better based on Stochastic Differential Equation (SDE) approximation. The main contributions of this paper include (i) the derivation of an SDE that captures the long-term behavior of Local SGD in the small learning rate regime, showing how noise drives the iterate to drift and diffuse after it has reached close to the manifold of local minima, (ii) a comparison between the SDEs of Local SGD and SGD, showing that Local SGD induces a stronger drift term that can result in a stronger effect of regularization, e.g., a faster reduction of sharpness, and (iii) empirical evidence validating that having a small learning rate and long enough training time enables the generalization improvement over SGD but removing either of the two conditions leads to no improvement.


In-Person Poster presentation / poster accept
#110
EPISODE: Episodic Gradient Clipping with Periodic Resampled Corrections for Federated Learning with Heterogeneous Data

Michael Crawshaw · Yajie Bao · Mingrui Liu

Gradient clipping is an important technique for deep neural networks with exploding gradients, such as recurrent neural networks. Recent studies have shown that the loss functions of these networks do not satisfy the conventional smoothness condition, but instead satisfy a relaxed smoothness condition, i.e., the Lipschitz constant of the gradient scales linearly in terms of the gradient norm. Due to this observation, several gradient clipping algorithms have been developed for nonconvex and relaxed-smooth functions. However, the existing algorithms only apply to the single-machine or multiple-machine setting with homogeneous data across machines. It remains unclear how to design provably efficient gradient clipping algorithms in the general Federated Learning (FL) setting with heterogeneous data and limited communication rounds. In this paper, we design EPISODE, the very first algorithm to solve FL problems with heterogeneous data in the nonconvex and relaxed smoothness setting. The key ingredients of the algorithm are two new techniques called \textit{episodic gradient clipping} and \textit{periodic resampled corrections}. At the beginning of each round, EPISODE resamples stochastic gradients from each client and obtains the global averaged gradient, which is used to (1) determine whether to apply gradient clipping for the entire round and (2) construct local gradient corrections for each client. Notably, our algorithm and analysis provide a unified framework for both homogeneous and heterogeneous data under any noise level of the stochastic gradient, and it achieves state-of-the-art complexity results. In particular, we prove that EPISODE can achieve linear speedup in the number of machines, and it requires significantly fewer communication rounds. Experiments on several heterogeneous datasets, including text classification and image classification, show the superior performance of EPISODE over several strong baselines in FL. The code is available at https://github.com/MingruiLiu-ML-Lab/episode.


In-Person Poster presentation / poster accept
#129
Denoising Diffusion Samplers

Francisco Vargas · Will Grathwohl · Arnaud Doucet

Denoising diffusion models are a popular class of generative models providing state-of-the-art results in many domains. One adds gradually noise to data using a diffusion to transform the data distribution into a Gaussian distribution. Samples from the generative model are then obtained by simulating an approximation of the time-reversal of this diffusion initialized by Gaussian samples. Practically, the intractable score terms appearing in the time-reversed process are approximated using score matching techniques. We explore here a similar idea to sample approximately from unnormalized probability density functions and estimate their normalizing constants. We consider a process where the target density diffuses towards a Gaussian. Denoising Diffusion Samplers (DDS) are obtained by approximating the corresponding time-reversal. While score matching is not applicable in this context, we can leverage many of the ideas introduced in generative modeling for Monte Carlo sampling. Existing theoretical results from denoising diffusion models also provide theoretical guarantees for DDS. We discuss the connections between DDS, optimal control and Schr\"odinger bridges and finally demonstrate DDS experimentally on a variety of challenging sampling tasks.


In-Person Poster presentation / poster accept
#109
Weighted Clock Logic Point Process

Ruixuan Yan · Yunshi Wen · Debarun Bhattacharjya · Ronny Luss · Tengfei Ma · Achille Fokoue · Anak Agung Julius

Datasets involving multivariate event streams are prevalent in numerous applications. We present a novel framework for modeling temporal point processes called clock logic neural networks (CLNN) which learn weighted clock logic (wCL) formulas as interpretable temporal rules by which some events promote or inhibit other events. Specifically, CLNN models temporal relations between events using conditional intensity rates informed by a set of wCL formulas, which are more expressive than related prior work. Unlike conventional approaches of searching for generative rules through expensive combinatorial optimization, we design smooth activation functions for components of wCL formulas that enable a continuous relaxation of the discrete search space and efficient learning of wCL formulas using gradient-based methods. Experiments on synthetic datasets manifest our model's ability to recover the ground-truth rules and improve computational efficiency. In addition, experiments on real-world datasets show that our models perform competitively when compared with state-of-the-art models.


In-Person Poster presentation / poster accept
#128
Causal Balancing for Domain Generalization

Xinyi Wang · Michael Saxon · Jiachen Li · Hongyang Zhang · Kun Zhang · William Wang

While machine learning models rapidly advance the state-of-the-art on various real-world tasks, out-of-domain (OOD) generalization remains a challenging problem given the vulnerability of these models to spurious correlations. We propose a balanced mini-batch sampling strategy to transform a biased data distribution into a spurious-free balanced distribution, based on the invariance of the underlying causal mechanisms for the data generation process. We argue that the Bayes optimal classifiers trained on such balanced distribution are minimax optimal across a diverse enough environment space. We also provide an identifiability guarantee of the latent variable model of the proposed data generation process, when utilizing enough train environments. Experiments are conducted on DomainBed, demonstrating empirically that our method obtains the best performance across 20 baselines reported on the benchmark.


In-Person Poster presentation / poster accept
#108
Dynamic Update-to-Data Ratio: Minimizing World Model Overfitting

Nicolai Dorka · Tim Welschehold · Wolfram Burgard

Early stopping based on the validation set performance is a popular approach to find the right balance between under- and overfitting in the context of supervised learning. However, in reinforcement learning, even for supervised sub-problems such as world model learning, early stopping is not applicable as the dataset is continually evolving. As a solution, we propose a new general method that dynamically adjusts the update to data (UTD) ratio during training based on under- and overfitting detection on a small subset of the continuously collected experience not used for training. We apply our method to DreamerV2, a state-of-the-art model-based reinforcement learning algorithm, and evaluate it on the DeepMind Control Suite and the Atari 100k benchmark. The results demonstrate that one can better balance under- and overestimation by adjusting the UTD ratio with our approach compared to the default setting in DreamerV2 and that it is competitive with an extensive hyperparameter search which is not feasible for many applications. Our method eliminates the need to set the UTD hyperparameter by hand and even leads to a higher robustness with regard to other learning-related hyperparameters further reducing the amount of necessary tuning.


In-Person Poster presentation / poster accept
#127
Q-Pensieve: Boosting Sample Efficiency of Multi-Objective RL Through Memory Sharing of Q-Snapshots

Wei Hung · Bo Kai Huang · Ping-Chun Hsieh · Xi Liu

Many real-world continuous control problems are in the dilemma of weighing the pros and cons, multi-objective reinforcement learning (MORL) serves as a generic framework of learning control policies for different preferences over objectives. However, the existing MORL methods either rely on multiple passes of explicit search for finding the Pareto front and therefore are not sample-efficient, or utilizes a shared policy network for coarse knowledge sharing among policies. To boost the sample efficiency of MORL, we propose $Q$-Pensieve, a policy improvement scheme that stores a collection of $Q$-snapshots to jointly determine the policy update direction and thereby enables data sharing at the policy level. We show that $Q$-Pensieve can be naturally integrated with soft policy iteration with convergence guarantee. To substantiate this concept, we propose the technique of $Q$ replay buffer, which stores the learned $Q$-networks from the past iterations, and arrive at a practical actor-critic implementation. Through extensive experiments and an ablation study, we demonstrate that with much fewer samples, the proposed algorithm can outperform the benchmark MORL methods on a variety of MORL benchmark tasks.


In-Person Poster presentation / poster accept
#107
A Control-Centric Benchmark for Video Prediction

Stephen Tian · Chelsea Finn · Jiajun Wu

Video is a promising source of knowledge for embodied agents to learn models of the world's dynamics. Large deep networks have become increasingly effective at modeling complex video data in a self-supervised manner, as evaluated by metrics based on human perceptual similarity or pixel-wise comparison. However, it remains unclear whether current metrics are accurate indicators of performance on downstream tasks. We find empirically that for planning robotic manipulation, existing metrics can be unreliable at predicting execution success. To address this, we propose a benchmark for action-conditioned video prediction in the form of a control benchmark that evaluates a given model for simulated robotic manipulation through sampling-based planning. Our benchmark, Video Prediction for Visual Planning ($\text{VP}^2$), includes simulated environments with $11$ task categories and $310$ task instance definitions, a full planning implementation, and training datasets containing scripted interaction trajectories for each task category. A central design goal of our benchmark is to expose a simple interface -- a single forward prediction call -- so it is straightforward to evaluate almost any action-conditioned video prediction model. We then leverage our benchmark to study the effects of scaling model size, quantity of training data, and model ensembling by analyzing five highly-performant video prediction models, finding that while scale can improve perceptual quality when modelling visually diverse settings, other attributes such as uncertainty awareness can also aid planning performance.


In-Person Poster presentation / poster accept
#126
Preference Transformer: Modeling Human Preferences using Transformers for RL

Changyeon Kim · Jongjin Park · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee

Preference-based reinforcement learning (RL) provides a framework to train agents using human preferences between two behaviors. However, preference-based RL has been challenging to scale since it requires a large amount of human feedback to learn a reward function aligned with human intent. In this paper, we present Preference Transformer, a neural architecture that models human preferences using transformers. Unlike prior approaches assuming human judgment is based on the Markovian rewards which contribute to the decision equally, we introduce a new preference model based on the weighted sum of non-Markovian rewards. We then design the proposed preference model using a transformer architecture that stacks causal and bidirectional self-attention layers. We demonstrate that Preference Transformer can solve a variety of control tasks using real human preferences, while prior approaches fail to work. We also show that Preference Transformer can induce a well-specified reward and attend to critical events in the trajectory by automatically capturing the temporal dependencies in human decision-making. Code is available on the project website: https://sites.google.com/view/preference-transformer.


In-Person Poster presentation / top 5% paper
#106
Outstanding Paper
Emergence of Maps in the Memories of Blind Navigation Agents

Erik Wijmans · Manolis Savva · Irfan Essa · Stefan Lee · Ari Morcos · Dhruv Batra

Animal navigation research posits that organisms build and maintain internal spa- tial representations, or maps, of their environment. We ask if machines – specifically, artificial intelligence (AI) navigation agents – also build implicit (or ‘mental’) maps. A positive answer to this question would (a) explain the surprising phenomenon in recent literature of ostensibly map-free neural-networks achieving strong performance, and (b) strengthen the evidence of mapping as a fundamental mechanism for navigation by intelligent embodied agents, whether they be biological or artificial. Unlike animal navigation, we can judiciously design the agent’s perceptual system and control the learning paradigm to nullify alternative navigation mechanisms. Specifically, we train ‘blind’ agents – with sensing limited to only egomotion and no other sensing of any kind – to perform PointGoal navigation (‘go to $\Delta$x, $\Delta$y’) via reinforcement learning. Our agents are composed of navigation-agnostic components (fully-connected and recurrent neural networks), and our experimental setup provides no inductive bias towards mapping. Despite these harsh conditions, we find that blind agents are (1) surprisingly effective navigators in new environments (∼95% success); (2) they utilize memory over long horizons (remembering ∼1,000 steps of past experience in an episode); (3) this memory enables them to exhibit intelligent behavior (following walls, detecting collisions, taking shortcuts); (4) there is emergence of maps and collision detection neurons in the representations of the environment built by a blind agent as it navigates; and (5) the emergent maps are selective and task dependent (e.g. the agent ‘forgets’ exploratory detours). Overall, this paper presents no new techniques for the AI audience, but a surprising finding, an insight, and an explanation.


In-Person Poster presentation / poster accept
#125
Learning Zero-Shot Cooperation with Humans, Assuming Humans Are Biased

Chao Yu · Jiaxuan Gao · Weilin Liu · Botian Xu · Hao Tang · Jiaqi Yang · Yu Wang · Yi Wu

There is a recent trend of applying multi-agent reinforcement learning (MARL) to train an agent that can cooperate with humans in a zero-shot fashion without using any human data. The typical workflow is to first repeatedly run self-play (SP) to build a policy pool and then train the final adaptive policy against this pool. A crucial limitation of this framework is that every policy in the pool is optimized w.r.t. the environment reward function, which implicitly assumes that the testing partners of the adaptive policy will be precisely optimizing the same reward function as well. However, human objectives are often substantially biased according to their own preferences, which can differ greatly from the environment reward. We propose a more general framework, Hidden-Utility Self-Play (HSP), which explicitly models human biases as hidden reward functions in the self-play objective. By approximating the reward space as linear functions, HSP adopts an effective technique to generate an augmented policy pool with biased policies. We evaluate HSP on the Overcooked benchmark. Empirical results show that our HSP method produces higher rewards than baselines when cooperating with learned human models, manually scripted policies, and real humans. The HSP policy is also rated as the most assistive policy based on human feedback.


In-Person Poster presentation / top 5% paper
#105
Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes

Aviral Kumar · Rishabh Agarwal · Xinyang Geng · George Tucker · Sergey Levine

The potential of offline reinforcement learning (RL) is that high-capacity models trained on large, heterogeneous datasets can lead to agents that generalize broadly, analogously to similar advances in vision and NLP. However, recent works argue that offline RL methods encounter unique challenges to scaling up model capacity. Drawing on the learnings from these works, we re-examine previous design choices and find that with appropriate choices: ResNets, cross-entropy based distributional backups, and feature normalization, offline Q-learning algorithms exhibit strong performance that scales with model capacity. Using multi-task Atari as a testbed for scaling and generalization, we train a single policy on 40 games with near-human performance using up-to 80 million parameter networks, finding that model performance scales favorably with capacity. In contrast to prior work, we extrapolate beyond dataset performance even when trained entirely on a large (400M transitions) but highly suboptimal dataset (51% human-level performance). Compared to return-conditioned supervised approaches, offline Q-learning scales similarly with model capacity and has better performance, especially when the dataset is suboptimal. Finally, we show that offline Q-learning with a diverse dataset is sufficient to learn powerful representations that facilitate rapid transfer to novel games and fast online learning on new variations of a training game, improving over existing state-of-the-art representation learning approaches.


In-Person Poster presentation / poster accept
#124
Learning Achievement Structure for Structured Exploration in Domains with Sparse Reward

Zihan Zhou · Animesh Garg

We propose Structured Exploration with Achievements (SEA), a multi-stage reinforcement learning algorithm designed for achievement-based environments, a particular type of environment with an internal achievement set. SEA first uses offline data to learn a representation of the known achievements with a determinant loss function, then recovers the dependency graph of the learned achievements with a heuristic algorithm, and finally interacts with the environment online to learn policies that master known achievements and explore new ones with a controller built with the recovered dependency graph. We empirically demonstrate that SEA can recover the achievement structure accurately and improve exploration in hard domains such as Crafter that are procedurally generated with high-dimensional observations like images.


In-Person Poster presentation / top 25% paper
#104
Learning Soft Constraints From Constrained Expert Demonstrations

Ashish Gaurav · Kasra Rezaee · Guiliang Liu · Pascal Poupart

Inverse reinforcement learning (IRL) methods assume that the expert data is generated by an agent optimizing some reward function. However, in many settings, the agent may optimize a reward function subject to some constraints, where the constraints induce behaviors that may be otherwise difficult to express with just a reward function. We consider the setting where the reward function is given, and the constraints are unknown, and propose a method that is able to recover these constraints satisfactorily from the expert data. While previous work has focused on recovering hard constraints, our method can recover cumulative soft constraints that the agent satisfies on average per episode. In IRL fashion, our method solves this problem by adjusting the constraint function iteratively through a constrained optimization procedure, until the agent behavior matches the expert behavior. We demonstrate our approach on synthetic environments, robotics environments and real world highway driving scenarios.


In-Person Poster presentation / poster accept
#103
LS-IQ: Implicit Reward Regularization for Inverse Reinforcement Learning

Firas Al-Hafez · Davide Tateo · Oleg Arenz · Guoping Zhao · Jan Peters

Recent methods for imitation learning directly learn a $Q$-function using an implicit reward formulation rather than an explicit reward function. However, these methods generally require implicit reward regularization to improve stability and often mistreat absorbing states. Previous works show that a squared norm regularization on the implicit reward function is effective, but do not provide a theoretical analysis of the resulting properties of the algorithms. In this work, we show that using this regularizer under a mixture distribution of the policy and the expert provides a particularly illuminating perspective: the original objective can be understood as squared Bellman error minimization, and the corresponding optimization problem minimizes a bounded $\chi^2$-Divergence between the expert and the mixture distribution. This perspective allows us to address instabilities and properly treat absorbing states. We show that our method, Least Squares Inverse Q-Learning (LS-IQ), outperforms state-of-the-art algorithms, particularly in environments with absorbing states. Finally, we propose to use an inverse dynamics model to learn from observations only. Using this approach, we retain performance in settings where no expert actions are available.


In-Person Poster presentation / poster accept
#122
MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations

Nicklas Hansen · Yixin Lin · Hao Su · Xiaolong Wang · Vikash Kumar · Aravind Rajeswaran

Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 160%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100k interaction steps, 5 demonstrations). Code and videos are available at https://nicklashansen.github.io/modemrl.


In-Person Poster presentation / poster accept
#102
RPM: Generalizable Multi-Agent Policies for Multi-Agent Reinforcement Learning

WEI QIU · Xiao Ma · Bo An · Svetlana Obraztsova · shuicheng YAN · Zhongwen Xu

Despite the recent advancement in multi-agent reinforcement learning (MARL), the MARL agents easily overfit the training environment and perform poorly in evaluation scenarios where other agents behave differently. Obtaining generalizable policies for MARL agents is thus necessary but challenging mainly due to complex multi-agent interactions. In this work, we model the MARL problem with Markov Games and propose a simple yet effective method, called ranked policy memory (RPM), i.e., to maintain a look-up memory of policies to achieve good generalizability. The main idea of RPM is to train MARL policies via gathering massive multi-agent interaction data. In particular, we first rank each agent’s policies by its training episode return, i.e., the episode return of each agent in the training environment; we then save the ranked policies in the memory; when an episode starts, each agent can randomly select a policy from the RPM as the behavior policy. Each agent uses the behavior policy to gather multi-agent interaction data for MARL training. This innovative self-play framework guarantees the diversity of multi-agent interaction in the training data. Experimental results on Melting Pot demonstrate that RPM enables MARL agents to interact with unseen agents in multi-agent generalization evaluation scenarios and complete given tasks. It significantly boosts the performance up to 818% on average.


In-Person Poster presentation / top 25% paper
#121
The In-Sample Softmax for Offline Reinforcement Learning

Chenjun Xiao · Han Wang · Yangchen Pan · Adam White · Martha White

Reinforcement learning (RL) agents can leverage batches of previously collected data to extract a reasonable control policy. An emerging issue in this offline RL setting, however, is that the bootstrapping update underlying many of our methods suffers from insufficient action-coverage: standard max operator may select a maximal action that has not been seen in the dataset. Bootstrapping from these inaccurate values can lead to overestimation and even divergence. There are a growing number of methods that attempt to approximate an in-sample max, that only uses actions well-covered by the dataset. We highlight a simple fact: it is more straightforward to approximate an in-sample softmax using only actions in the dataset. We show that policy iteration based on the in-sample softmax converges, and that for decreasing temperatures it approaches the in-sample max. We derive an In-Sample Actor-Critic (AC), using this in-sample softmax, and show that it is consistently better or comparable to existing offline RL methods, and is also well-suited to fine-tuning. We release the code at github.com/hwang-ua/inac_pytorch.


In-Person Poster presentation / top 25% paper
#101
Does Zero-Shot Reinforcement Learning Exist?

Ahmed Touati · Jérémy Rapin · Yann Ollivier

A zero-shot RL agent is an agent that can solve any RL task in a given environment, instantly with no additional planning or learning, after an initial reward-free learning phase. This marks a shift from the reward-centric RL paradigm towards controllable agents that can follow arbitrary instructions in an environment. Current RL agents can solve families of related tasks at best, or require planning anew for each task. Strategies for approximate zero-shot RL have been suggested using successor features (SFs) (Borsa et al., 2018) or forward-backward (FB) representations (Touati & Ollivier, 2021), but testing has been limited. After clarifying the relationships between these schemes, we introduce improved losses and new SF models, and test the viability of zero-shot RL schemes systematically on tasks from the Unsupervised RL benchmark (Laskin et al., 2021). To disentangle universal representation learning from exploration, we work in an offline setting and repeat the tests on several existing replay buffers.SFs appear to suffer from the choice of the elementary state features. SFs with Laplacian eigenfunctions do well, while SFs based on auto-encoders, inverse curiosity, transition models, low-rank transition matrix, contrastive learning, or diversity (APS), perform unconsistently. In contrast, FB representations jointly learn the elementary and successor features from a single, principled criterion. They perform best and consistently across the board, reaching $85\%$ of supervised RL performance with a good replay buffer, in a zero-shot manner.


In-Person Poster presentation / poster accept
#120
Scaling Pareto-Efficient Decision Making via Offline Multi-Objective RL

Baiting Zhu · Meihua Dang · Aditya Grover

The goal of multi-objective reinforcement learning (MORL) is to learn policies that simultaneously optimize multiple competing objectives. In practice, an agent's preferences over the objectives may not be known apriori, and hence, we require policies that can generalize to arbitrary preferences at test time. In this work, we propose a new data-driven setup for offline MORL, where we wish to learn a preference-agnostic policy agent using only a finite dataset of offline demonstrations of other agents and their preferences. The key contributions of this work are two-fold. First, we introduce D4MORL, (D)atasets for MORL that are specifically designed for offline settings. It contains 1.8 million annotated demonstrations obtained by rolling out reference policies that optimize for randomly sampled preferences on 6 MuJoCo environments with 2-3 objectives each. Second, we propose Pareto-Efficient Decision Agents (PEDA), a family of offline MORL algorithms that builds and extends Decision Transformers via a novel preference-and-return-conditioned policy. Empirically, we show that PEDA closely approximates the behavioral policy on the D4MORL benchmark and provides an excellent approximation of the Pareto-front with appropriate conditioning, as measured by the hypervolume and sparsity metrics.


In-Person Poster presentation / top 25% paper
#100
DEP-RL: Embodied Exploration for Reinforcement Learning in Overactuated and Musculoskeletal Systems

Pierre Schumacher · Daniel Haeufle · Dieter Büchler · Syn Schmitt · Georg Martius

Muscle-actuated organisms are capable of learning an unparalleled diversity of dexterous movements despite their vast amount of muscles. Reinforcement learning (RL) on large musculoskeletal models, however, has not been able to show similar performance. We conjecture that ineffective exploration in large overactuated action spaces is a key problem.This is supported by the finding that common exploration noise strategies are inadequate in synthetic examples of overactuated systems. We identify differential extrinsic plasticity (DEP), a method from the domain of self-organization, as being able to induce state-space covering exploration within seconds of interaction. By integrating DEP into RL, we achieve fast learning of reaching and locomotion in musculoskeletal systems, outperforming current approaches in all considered tasks in sample efficiency and robustness.


In-Person Poster presentation / poster accept
#119
Safe Reinforcement Learning From Pixels Using a Stochastic Latent Representation

Yannick Hogewind · Thiago D. Simão · Tal Kachman · Nils Jansen

We address the problem of safe reinforcement learning from pixel observations. Inherent challenges in such settings are (1) a trade-off between reward optimization and adhering to safety constraints, (2) partial observability, and (3) high-dimensional observations. We formalize the problem in a constrained, partially observable Markov decision process framework, where an agent obtains distinct reward and safety signals. To address the curse of dimensionality, we employ a novel safety critic using the stochastic latent actor-critic (SLAC) approach. The latent variable model predicts rewards and safety violations, and we use the safety critic to train safe policies. Using well-known benchmark environments, we demonstrate competitive performance over existing approaches regarding computational requirements, final reward return, and satisfying the safety constraints.


In-Person Poster presentation / poster accept
#99
Performance Bounds for Model and Policy Transfer in Hidden-parameter MDPs

Haotian Fu · Jiayu Yao · Omer Gottesman · Finale Doshi-Velez · George D Konidaris

In the Hidden-Parameter MDP (HiP-MDP) framework, a family of reinforcement learning tasks is generated by varying hidden parameters specifying the dynamics and reward function for each individual task. HiP-MDP is a natural model for families of tasks in which meta- and lifelong-reinforcement learning approaches can succeed. Given a learned context encoder that infers the hidden parameters from previous experience, most existing algorithms fall into two categories: $\textit{model transfer}$ and $\textit{policy transfer}$, depending on which function the hidden parameters are used to parameterize. We characterize the robustness of model and policy transfer algorithms with respect to hidden parameter estimation error. We first show that the value function of HiP-MDPs is Lipschitz continuous under certain conditions. We then derive regret bounds for both settings through the lens of Lipschitz continuity. Finally, we empirically corroborate our theoretical analysis by experimentally varying the hyper-parameters governing the Lipschitz constants of two continuous control problems; the resulting performance is consistent with our predictions.


In-Person Poster presentation / top 25% paper
#118
VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training

Yecheng Jason Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang

Reward and representation learning are two long-standing challenges for learning an expanding set of robot manipulation skills from sensory observations. Given the inherent cost and scarcity of in-domain, task-specific robot data, learning from large, diverse, offline human videos has emerged as a promising path towards acquiring a generally useful visual representation for control; however, how these human videos can be used for general-purpose reward learning remains an open question. We introduce $\textbf{V}$alue-$\textbf{I}$mplicit $\textbf{P}$re-training (VIP), a self-supervised pre-trained visual representation capable of generating dense and smooth reward functions for unseen robotic tasks. VIP casts representation learning from human videos as an offline goal-conditioned reinforcement learning problem and derives a self-supervised dual goal-conditioned value-function objective that does not depend on actions, enabling pre-training on unlabeled human videos. Theoretically, VIP can be understood as a novel implicit time contrastive objective that generates a temporally smooth embedding, enabling the value function to be implicitly defined via the embedding distance, which can then be used to construct the reward for any goal-image specified downstream task. Trained on large-scale Ego4D human videos and without any fine-tuning on in-domain, task-specific data, VIP can provide dense visual reward for an extensive set of simulated and $\textbf{real-robot}$ tasks, enabling diverse reward-based visual control methods and significantly outperforming all prior pre-trained representations. Notably, VIP can enable simple, few-shot offline RL on a suite of real-world robot tasks with as few as 20 trajectories.


In-Person Poster presentation / top 25% paper
#113
Neuroevolution is a Competitive Alternative to Reinforcement Learning for Skill Discovery

Felix Chalumeau · Raphael Boige · Bryan Lim · Valentin Macé · Maxime Allard · Arthur Flajolet · Antoine Cully · Thomas PIERROT

Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks. However, these policies tend to be overfit to the exact specifications of the task and environment they were trained on, and thus do not perform well when conditions deviate slightly or when composed hierarchically to solve even more complex tasks. Recent work has shown that training a mixture of policies, as opposed to a single one, that are driven to explore different regions of the state-action space can address this shortcoming by generating a diverse set of behaviors, referred to as skills, that can be collectively used to great effect in adaptation tasks or for hierarchical planning. This is typically realized by including a diversity term - often derived from information theory - in the objective function optimized by RL. However these approaches often require careful hyperparameter tuning to be effective. In this work, we demonstrate that less widely-used neuroevolution methods, specifically Quality Diversity (QD), are a competitive alternative to information-theory-augmented RL for skill discovery. Through an extensive empirical evaluation comparing eight state-of-the-art algorithms (four flagship algorithms from each line of work) on the basis of (i) metrics directly evaluating the skills' diversity, (ii) the skills' performance on adaptation tasks, and (iii) the skills' performance when used as primitives for hierarchical planning; QD methods are found to provide equal, and sometimes improved, performance whilst being less sensitive to hyperparameters and more scalable. As no single method is found to provide near-optimal performance across all environments, there is a rich scope for further research which we support by proposing future directions and providing optimized open-source implementations.


In-Person Poster presentation / poster accept
#117
Wasserstein Auto-encoded MDPs: Formal Verification of Efficiently Distilled RL Policies with Many-sided Guarantees

Florent Delgrange · Ann Nowe · Guillermo Perez

Although deep reinforcement learning (DRL) has many success stories, the large-scale deployment of policies learned through these advanced techniques in safety-critical scenarios is hindered by their lack of formal guarantees. Variational Markov Decision Processes (VAE-MDPs) are discrete latent space models that provide a reliable framework for distilling formally verifiable controllers from any RL policy. While the related guarantees address relevant practical aspects such as the satisfaction of performance and safety properties, the VAE approach suffers from several learning flaws (posterior collapse, slow learning speed, poor dynamics estimates), primarily due to the absence of abstraction and representation guarantees to support latent optimization. We introduce the Wasserstein auto-encoded MDP (WAE-MDP), a latent space model that fixes those issues by minimizing a penalized form of the optimal transport between the behaviors of the agent executing the original policy and the distilled policy, for which the formal guarantees apply. Our approach yields bisimulation guarantees while learning the distilled policy, allowing concrete optimization of the abstraction and representation model quality. Our experiments show that, besides distilling policies up to 10 times faster, the latent model quality is indeed better in general. Moreover, we present experiments from a simple time-to-failure verification algorithm on the latent space. The fact that our approach enables such simple verification techniques highlights its applicability.


In-Person Poster presentation / top 25% paper
#96
Quantifying Memorization Across Neural Language Models

Nicholas Carlini · Daphne Ippolito · Matthew Jagielski · Katherine Lee · Florian Tramer · Chiyuan Zhang

Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized training data verbatim. This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others).We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data. Memorization significantly grows as we increase (1) the capacity of a model, (2) the number of times an example has been duplicated, and (3) the number of tokens of context used to prompt the model. Surprisingly, we find the situation becomes complicated when generalizing these results across model families. On the whole, we find that memorization in LMs is more prevalent than previously believed and will likely get worse as models continues to scale, at least without active mitigations.


In-Person Poster presentation / poster accept
#115
Fooling SHAP with Stealthily Biased Sampling

Gabriel Laberge · Ulrich Aïvodji · Satoshi Hara · Mario Marchand · Foutse Khomh

SHAP explanations aim at identifying which features contribute the most to the difference in model prediction at a specific input versus a background distribution. Recent studies have shown that they can be manipulated by malicious adversaries to produce arbitrary desired explanations. However, existing attacks focus solely on altering the black-box model itself. In this paper, we propose a complementary family of attacks that leave the model intact and manipulate SHAP explanations using stealthily biased sampling of the data points used to approximate expectations w.r.t the background distribution. In the context of fairness audit, we show that our attack can reduce the importance of a sensitive feature when explaining the difference in outcomes between groups while remaining undetected. More precisely, experiments performed on real-world datasets showed that our attack could yield up to a 90\% relative decrease in amplitude of the sensitive feature attribution. These results highlight the manipulability of SHAP explanations and encourage auditors to treat them with skepticism.


In-Person Poster presentation / poster accept
#134
Valid P-Value for Deep Learning-driven Salient Region

Daiki Miwa · Vo Nguyen Le Duy · Ichiro Takeuchi

Various saliency map methods have been proposed to interpret and explain predictions of deep learning models. Saliency maps allow us to interpret which parts of the input signals have a strong influence on the prediction results. However, since a saliency map is obtained by complex computations in deep learning models, it is often difficult to know how reliable the saliency map itself is. In this study, we propose a method to quantify the reliability of a saliency region in the form of p-values. Our idea is to consider a saliency map as a selected hypothesis by the trained deep learning model and employ the selective inference framework. The proposed method provably provides a valid p-value for the detected salient region, i.e., we can provably control the false positive rate of the detected salient region. We demonstrate the validity of the proposed method through numerical examples in synthetic and real datasets. Furthermore, we develop a Keras-based framework for conducting the proposed selective inference for a wide class of CNNs without additional implementation cost.


In-Person Poster presentation / top 25% paper
#153
UNICORN: A Unified Backdoor Trigger Inversion Framework

Zhenting Wang · Kai Mei · Juan Zhai · Shiqing Ma

The backdoor attack, where the adversary uses inputs stamped with triggers (e.g., a patch) to activate pre-planted malicious behaviors, is a severe threat to Deep Neural Network (DNN) models. Trigger inversion is an effective way of identifying backdoor models and understanding embedded adversarial behaviors. A challenge of trigger inversion is that there are many ways of constructing the trigger. Existing methods cannot generalize to various types of triggers by making certain assumptions or attack-specific constraints. The fundamental reason is that existing work does not formally define the trigger and the inversion problem. This work formally defines and analyzes the trigger and the inversion problem. Then, it proposes a unified framework to invert backdoor triggers based on the formalization of triggers and the identified inner behaviors of backdoor models from our analysis. Our prototype UNICORN is general and effective in inverting backdoor triggers in DNNs. The code can be found at https://github.com/RU-System-Software-and-Security/UNICORN.


In-Person Poster presentation / top 25% paper
#135
Human-Guided Fair Classification for Natural Language Processing

Florian Eddie Dorner · Momchil Peychev · Nikola Konstantinov · Naman Goel · Elliott Ash · Martin Vechev

Text classifiers have promising applications in high-stake tasks such as resume screening and content moderation. These classifiers must be fair and avoid discriminatory decisions by being invariant to perturbations of sensitive attributes such as gender or ethnicity. However, there is a gap between human intuition about these perturbations and the formal similarity specifications capturing them. While existing research has started to address this gap, current methods are based on hardcoded word replacements, resulting in specifications with limited expressivity or ones that fail to fully align with human intuition (e.g., in cases of asymmetric counterfactuals). This work proposes novel methods for bridging this gap by discovering expressive and intuitive individual fairness specifications. We show how to leverage unsupervised style transfer and GPT-3's zero-shot capabilities to automatically generate expressive candidate pairs of semantically similar sentences that differ along sensitive attributes. We then validate the generated pairs via an extensive crowdsourcing study, which confirms that a lot of these pairs align with human intuition about fairness in the context of toxicity classification. Finally, we show how limited amounts of human feedback can be leveraged to learn a similarity specification that can be used to train downstream fairness-aware models.


In-Person Poster presentation / top 25% paper
#154
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries

Yuxin Wen · Arpit Bansal · hamid kazemi · Eitan Borgnia · Micah Goldblum · Jonas Geiping · Tom Goldstein

As industrial applications are increasingly automated by machine learning models, enforcing personal data ownership and intellectual property rights requires tracing training data back to their rightful owners. Membership inference algorithms approach this problem by using statistical techniques to discern whether a target sample was included in a model's training set. However, existing methods only utilize the unaltered target sample or simple augmentations of the target to compute statistics. Such a sparse sampling of the model's behavior carries little information, leading to poor inference capabilities. In this work, we use adversarial tools to directly optimize for queries that are discriminative and diverse. Our improvements achieve significantly more accurate membership inference than existing methods, especially in offline scenarios and in the low false-positive regime which is critical in legal settings.


In-Person Poster presentation / poster accept
#136
Sound Randomized Smoothing in Floating-Point Arithmetic

Vaclav Voracek · Matthias Hein

Randomized smoothing is sound when using infinite precision. However, we show that randomized smoothing is no longer sound for limited floating-point precision. We present a simple example where randomized smoothing certifies a radius of $1.26$ around a point, even though there is an adversarial example in the distance $0.8$ and show how this can be abused to give false certificates for CIFAR10. We discuss the implicit assumptions of randomized smoothing and show that they do not apply to generic image classification models whose smoothed versions are commonly certified. In order to overcome this problem, we propose a sound approach to randomized smoothing when using floating-point precision with essentially equal speed for quantized input. It yields sound certificates or image classifiers which for the ones tested so far are very similar to the unsound practice of randomized smoothing. Our only assumption is that we have access to a fair coin.


In-Person Poster presentation / top 25% paper
#155
Provable Defense Against Geometric Transformations

Rem Yang · Jacob Laurel · Sasa Misailovic · Gagandeep Singh

Geometric image transformations that arise in the real world, such as scaling and rotation, have been shown to easily deceive deep neural networks (DNNs). Hence, training DNNs to be certifiably robust to these perturbations is critical. However, no prior work has been able to incorporate the objective of deterministic certified robustness against geometric transformations into the training procedure, as existing verifiers are exceedingly slow. To address these challenges, we propose the first provable defense for deterministic certified geometric robustness. Our framework leverages a novel GPU-optimized verifier that can certify images between 60$\times$ to 42,600$\times$ faster than existing geometric robustness verifiers, and thus unlike existing works, is fast enough for use in training. Across multiple datasets, our results show that networks trained via our framework consistently achieve state-of-the-art deterministic certified geometric robustness and clean accuracy. Furthermore, for the first time, we verify the geometric robustness of a neural network for the challenging, real-world setting of autonomous driving.


In-Person Poster presentation / top 5% paper
#156
Is the Performance of My Deep Network Too Good to Be True? A Direct Approach to Estimating the Bayes Error in Binary Classification

Takashi Ishida · Ikko Yamane · Nontawat Charoenphakdee · Gang Niu · Masashi Sugiyama

There is a fundamental limitation in the prediction performance that a machine learning model can achieve due to the inevitable uncertainty of the prediction target. In classification problems, this can be characterized by the Bayes error, which is the best achievable error with any classifier. The Bayes error can be used as a criterion to evaluate classifiers with state-of-the-art performance and can be used to detect test set overfitting. We propose a simple and direct Bayes error estimator, where we just take the mean of the labels that show \emph{uncertainty} of the class assignments. Our flexible approach enables us to perform Bayes error estimation even for weakly supervised data. In contrast to others, our method is model-free and even instance-free. Moreover, it has no hyperparameters and gives a more accurate estimate of the Bayes error than several baselines empirically. Experiments using our method suggest that recently proposed deep networks such as the Vision Transformer may have reached, or is about to reach, the Bayes error for benchmark datasets. Finally, we discuss how we can study the inherent difficulty of the acceptance/rejection decision for scientific articles, by estimating the Bayes error of the ICLR papers from 2017 to 2023.


In-Person Poster presentation / top 25% paper
#138
Is Adversarial Training Really a Silver Bullet for Mitigating Data Poisoning?

Rui Wen · Zhengyu Zhao · Zhuoran Liu · Michael Backes · Tianhao Wang · Yang Zhang

Indiscriminate data poisoning can decrease the clean test accuracy of a deep learning model by slightly perturbing its training samples.There is a consensus that such poisons can hardly harm adversarially-trained (AT) models when the adversarial training budget is no less than the poison budget, i.e., $\epsilon_\mathrm{adv}\geq\epsilon_\mathrm{poi}$. This consensus, however, is challenged in this paper based on our new attack strategy that induces \textit{entangled features} (EntF). The existence of entangled features makes the poisoned data become less useful for training a model, no matter if AT is applied or not. We demonstrate that for attacking a CIFAR-10 AT model under a reasonable setting with $\epsilon_\mathrm{adv}=\epsilon_\mathrm{poi}=8/255$, our EntF yields an accuracy drop of $13.31\%$, which is $7\times$ better than existing methods and equal to discarding $83\%$ training data. We further show the generalizability of EntF to more challenging settings, e.g., higher AT budgets, partial poisoning, unseen model architectures, and stronger (ensemble or adaptive) defenses. We finally provide new insights into the distinct roles of non-robust vs. robust features in poisoning standard vs. AT models and demonstrate the possibility of using a hybrid attack to poison standard and AT models simultaneously. Our code is available at~\url{https://github.com/WenRuiUSTC/EntF}.


In-Person Poster presentation / poster accept
#157
Equal Improvability: A New Fairness Notion Considering the Long-term Impact

Ozgur Guldogan · Yuchen Zeng · Jy-yong Sohn · Ramtin Pedarsani · Kangwook Lee

Devising a fair classifier that does not discriminate against different groups is an important problem in machine learning. Although researchers have proposed various ways of defining group fairness, most of them only focused on the immediate fairness, ignoring the long-term impact of a fair classifier under the dynamic scenario where each individual can improve its feature over time. Such dynamic scenarios happen in real world, e.g., college admission and credit loaning, where each rejected sample makes effort to change its features to get accepted afterwards. In this dynamic setting, the long-term fairness should equalize the samples’ feature distribution across different groups after the rejected samples make some effort to improve. In order to promote long-term fairness, we propose a new fairness notion called Equal Improvability (EI), which equalizes the potential acceptance rate of the rejected samples across different groups assuming a bounded level of effort will be spent by each rejected sample. We analyze the properties of EI and its connections with existing fairness notions. To find a classifier that satisfies the EI requirement, we propose and study three different approaches that solve EI regularized optimization problems. Through experiments on both synthetic and real datasets, we demonstrate that the proposed EI-regularized algorithms encourage us to find a fair classifier in terms of EI. Finally, we provide experimental results on dynamic scenarios which highlight the advantages of our EI metric in achieving the long-term fairness. Codes are available in anonymous GitHub repository.


In-Person Poster presentation / poster accept
#139
On the Perils of Cascading Robust Classifiers

Ravi Mangal · Zifan Wang · Chi Zhang · Klas Leino · Corina Pasareanu · Matt Fredrikson

Ensembling certifiably robust neural networks is a promising approach for improving the \emph{certified robust accuracy} of neural models. Black-box ensembles that assume only query-access to the constituent models (and their robustness certifiers) during prediction are particularly attractive due to their modular structure. Cascading ensembles are a popular instance of black-box ensembles that appear to improve certified robust accuracies in practice. However, we show that the robustness certifier used by a cascading ensemble is unsound. That is, when a cascading ensemble is certified as locally robust at an input $x$ (with respect to $\epsilon$), there can be inputs $x'$ in the $\epsilon$-ball centered at $x$, such that the cascade's prediction at $x'$ is different from $x$ and thus the ensemble is not locally robust. Our theoretical findings are accompanied by empirical results that further demonstrate this unsoundness. We present a new attack against cascading ensembles and show that: (1) there exists an adversarial input for up to 88\% of the samples where the ensemble claims to be certifiably robust and accurate; and (2) the accuracy of a cascading ensemble under our attack is as low as 11\% when it claims to be certifiably robust and accurate on 97\% of the test set. Our work reveals a critical pitfall of cascading certifiably robust models by showing that the seemingly beneficial strategy of cascading can actually hurt the robustness of the resulting ensemble. Our code is available at https://github.com/TristaChi/ensembleKW.


In-Person Poster presentation / top 25% paper
#158
Learning to Estimate Shapley Values with Vision Transformers

Ian Covert · Chanwoo Kim · Su-In Lee

Transformers have become a default architecture in computer vision, but understanding what drives their predictions remains a challenging problem. Current explanation approaches rely on attention values or input gradients, but these provide a limited view of a model’s dependencies. Shapley values offer a theoretically sound alternative, but their computational cost makes them impractical for large, high-dimensional models. In this work, we aim to make Shapley values practical for vision transformers (ViTs). To do so, we first leverage an attention masking approach to evaluate ViTs with partial information, and we then develop a procedure to generate Shapley value explanations via a separate, learned explainer model. Our experiments compare Shapley values to many baseline methods (e.g., attention rollout, GradCAM, LRP), and we find that our approach provides more accurate explanations than existing methods for ViTs.


In-Person Poster presentation / poster accept
#159
Neural-based classification rule learning for sequential data

Marine Collery · Philippe Bonnard · François Fages · Remy Kusters

Discovering interpretable patterns for classification of sequential data is of key importance for a variety of fields, ranging from genomics to fraud detection or more generally interpretable decision-making.In this paper, we propose a novel differentiable fully interpretable method to discover both local and global patterns (i.e. catching a relative or absolute temporal dependency) for rule-based binary classification.It consists of a convolutional binary neural network with an interpretable neural filter and a training strategy based on dynamically-enforced sparsity.We demonstrate the validity and usefulness of the approach on synthetic datasets and on an open-source peptides dataset.Key to this end-to-end differentiable method is that the expressive patterns used in the rules are learned alongside the rules themselves.


In-Person Poster presentation / poster accept
#141
Machine Unlearning of Federated Clusters

Chao Pan · Jin Sima · Saurav Prakash · Vishal Rana · Olgica Milenkovic

Federated clustering (FC) is an unsupervised learning problem that arises in a number of practical applications, including personalized recommender and healthcare systems. With the adoption of recent laws ensuring the "right to be forgotten", the problem of machine unlearning for FC methods has become of significant importance. We introduce, for the first time, the problem of machine unlearning for FC, and propose an efficient unlearning mechanism for a customized secure FC framework. Our FC framework utilizes special initialization procedures that we show are well-suited for unlearning. To protect client data privacy, we develop the secure compressed multiset aggregation (SCMA) framework that addresses sparse secure federated learning (FL) problems encountered during clustering as well as more general problems. To simultaneously facilitate low communication complexity and secret sharing protocols, we integrate Reed-Solomon encoding with special evaluation points into our SCMA pipeline, and prove that the client communication cost is logarithmic in the vector dimension. Additionally, to demonstrate the benefits of our unlearning mechanism over complete retraining, we provide a theoretical analysis for the unlearning performance of our approach. Simulation results show that the new FC framework exhibits superior clustering performance compared to previously reported FC baselines when the cluster sizes are highly imbalanced. Compared to completely retraining K-means++ locally and globally for each removal request, our unlearning procedure offers an average speed-up of roughly 84x across seven datasets. Our implementation for the proposed method is available at https://github.com/thupchnsky/mufc.


In-Person Poster presentation / poster accept
#160
Multimodal Federated Learning via Contrastive Representation Ensemble

Qiying Yu · Yang Liu · Yimu Wang · Ke Xu · Jingjing Liu

With the increasing amount of multimedia data on modern mobile systems and IoT infrastructures, harnessing these rich multimodal data without breaching user privacy becomes a critical issue. Federated learning (FL) serves as a privacy-conscious alternative to centralized machine learning. However, existing FL methods extended to multimodal data all rely on model aggregation on single modality level, which restrains the server and clients to have identical model architecture for each modality. This limits the global model in terms of both model complexity and data capacity, not to mention task diversity. In this work, we propose \textit{Contrastive Representation Ensemble and Aggregation for Multimodal FL (CreamFL)}, a multimodal federated learning framework that enables training larger server models from clients with heterogeneous model architectures and data modalities, while only communicating knowledge on public dataset. To achieve better multimodal representation fusion, we design a global-local cross-modal ensemble strategy to aggregate client representations. To mitigate local model drift caused by two unprecedented heterogeneous factors stemming from multimodal discrepancy (\textit{modality gap} and \textit{task gap}), we further propose two inter-modal and intra-modal contrasts to regularize local training, which complements information of the absent modality for uni-modal clients and regularizes local clients to head towards global consensus. Thorough evaluations and ablation studies on image-text retrieval and visual question answering tasks showcase the superiority of CreamFL over state-of-the-art FL methods and its practical value.


In-Person Poster presentation / poster accept
#142
A new characterization of the edge of stability based on a sharpness measure aware of batch gradient distribution

Sungyoon Lee · Cheongjae Jang

For full-batch gradient descent (GD), it has been empirically shown that the sharpness, the top eigenvalue of the Hessian, increases and then hovers above $2/\text{(learning rate)}$, and this is called ``the edge of stability'' phenomenon. However, it is unclear why the sharpness is somewhat larger than $2/\text{(learning rate)}$ and how this can be extended to general mini-batch stochastic gradient descent (SGD). We propose a new sharpness measure (interaction-aware-sharpness) aware of the \emph{interaction} between the batch gradient distribution and the loss landscape geometry. This leads to a more refined and general characterization of the edge of stability for SGD. Moreover, based on the analysis of a concentration measure of the batch gradient, we propose a more accurate scaling rule, Linear and Saturation Scaling Rule (LSSR), between batch size and learning rate.


In-Person Poster presentation / poster accept
#161
On The Relative Error of Random Fourier Features for Preserving Kernel Distance

Kuan Cheng · Shaofeng Jiang · Luojian Wei · Zhide Wei

The method of random Fourier features (RFF), proposed in a seminal paper by Rahimi and Recht (NIPS'07), is a powerful technique to find approximate low-dimensional representations of points in (high-dimensional) kernel space, for shift-invariant kernels. While RFF has been analyzed under various notions of error guarantee, the ability to preserve the kernel distance with \emph{relative} error is less understood. We show that for a significant range of kernels, including the well-known Laplacian kernels, RFF cannot approximate the kernel distance with small relative error using low dimensions. We complement this by showing as long as the shift-invariant kernel is analytic, RFF with $\mathrm{poly}(\epsilon^{-1} \log n)$ dimensions achieves $\epsilon$-relative error for pairwise kernel distance of $n$ points, and the dimension bound is improved to $\mathrm{poly}(\epsilon^{-1}\log k)$ for the specific application of kernel $k$-means. Finally, going beyond RFF, we make the first step towards data-oblivious dimension-reduction for general shift-invariant kernels, and we obtain a similar $\mathrm{poly}(\epsilon^{-1} \log n)$ dimension bound for Laplacian kernels. We also validate the dimension-error tradeoff of our methods on simulated datasets, and they demonstrate superior performance compared with other popular methods including random-projection and Nystr\"{o}m methods.


In-Person Poster presentation / poster accept
#143
A General Framework For Proving The Equivariant Strong Lottery Ticket Hypothesis

Damien Ferbach · Christos Tsirigotis · Gauthier Gidel · Joey Bose

The Strong Lottery Ticket Hypothesis (SLTH) stipulates the existence of a subnetwork within a sufficiently overparameterized (dense) neural network that---when initialized randomly and without any training---achieves the accuracy of a fully trained target network. Recent works by Da Cunha et. al 2022, Burkholz 2022 demonstrate that the SLTH can be extended to translation equivariant networks---i.e. CNNs---with the same level of overparametrization as needed for the SLTs in dense networks. However, modern neural networks are capable of incorporating more than just translation symmetry, and developing general equivariant architectures such as rotation and permutation has been a powerful design principle. In this paper, we generalize the SLTH to functions that preserve the action of the group $G$---i.e. $G$-equivariant network---and prove, with high probability, that one can approximate any $G$-equivariant network of fixed width and depth by pruning a randomly initialized overparametrized $G$-equivariant network to a $G$-equivariant subnetwork. We further prove that our prescribed overparametrization scheme is optimal and provide a lower bound on the number of effective parameters as a function of the error tolerance. We develop our theory for a large range of groups, including subgroups of the Euclidean $\text{E}(2)$ and Symmetric group $G \leq \mathcal{S}_n$---allowing us to find SLTs for MLPs, CNNs, $\text{E}(2)$-steerable CNNs, and permutation equivariant networks as specific instantiations of our unified framework. Empirically, we verify our theory by pruning overparametrized $\text{E}(2)$-steerable CNNs, $k$-order GNNs, and message passing GNNs to match the performance of trained target networks.


In-Person Poster presentation / poster accept
#162
Contextual bandits with concave rewards, and an application to fair ranking

Virginie Do · Elvis Dohmatob · Matteo Pirotta · Alessandro Lazaric · Nicolas Usunier

We consider Contextual Bandits with Concave Rewards (CBCR), a multi-objective bandit problem where the desired trade-off between the rewards is defined by a known concave objective function, and the reward vector depends on an observed stochastic context. We present the first algorithm with provably vanishing regret for CBCR without restrictions on the policy space, whereas prior works were restricted to finite policy spaces or tabular representations. Our solution is based on a geometric interpretation of CBCR algorithms as optimization algorithms over the convex set of expected rewards spanned by all stochastic policies. Building on Frank-Wolfe analyses in constrained convex optimization, we derive a novel reduction from the CBCR regret to the regret of a \emph{scalar-reward} bandit problem. We illustrate how to apply the reduction off-the-shelf to obtain algorithms for CBCR with both linear and general reward functions, in the case of non-combinatorial actions. Motivated by fairness in recommendation, we describe a special case of CBCR with rankings and fairness-aware objectives, leading to the first algorithm with regret guarantees for contextual combinatorial bandits with fairness of exposure.


In-Person Poster presentation / poster accept
#144
Why adversarial training can hurt robust accuracy

Jacob Clarysse · Julia Hörrmann · Fanny Yang

Machine learning classifiers with high test accuracy often perform poorly under adversarial attacks. It is commonly believed that adversarial training alleviates this issue. In this paper, we demonstrate that, surprisingly, the opposite can be true for a natural class of perceptible perturbations --- even though adversarial training helps when enough data is available, it may in fact hurt robust generalization in the small sample size regime. We first prove this phenomenon for a high-dimensional linear classification setting with noiseless observations. Using intuitive insights from the proof, we could surprisingly find perturbations on standard image datasets for which this behavior persists. Specifically, it occurs for perceptible attacks that effectively reduce class information such as object occlusions or corruptions.


In-Person Poster presentation / poster accept
#163
Continuous pseudo-labeling from the start

Dan Berrebbi · Ronan Collobert · Samy Bengio · Navdeep Jaitly · Tatiana Likhomanenko

Self-training (ST), or pseudo-labeling has sparked significant interest in the automatic speech recognition (ASR) community recently because of its success in harnessing unlabeled data. Unlike prior semi-supervised learning approaches that relied on iteratively regenerating pseudo-labels (PLs) from a trained model and using them to train a new model, recent state-of-the-art methods perform `continuous training' where PLs are generated using a very recent version of the model being trained. Nevertheless, these approaches still rely on bootstrapping the ST using an initial supervised learning phase where the model is trained on labeled data alone. We believe this has the potential for over-fitting to the labeled dataset in low resource settings and that ST from the start of training should reduce over-fitting. In this paper we show how we can do this by dynamically controlling the evolution of PLs during the training process in ASR. To the best of our knowledge, this is the first study that shows the feasibility of generating PLs from the very start of the training. We are able to achieve this using two techniques that avoid instabilities which lead to degenerate models that do not generalize. Firstly, we control the evolution of PLs through a curriculum that uses the online changes in PLs to control the membership of the cache of PLs and improve generalization. Secondly, we find that by sampling transcriptions from the predictive distribution, rather than only using the best transcription, we can stabilize training further. With these techniques, our ST models match prior works without an external language model.


In-Person Poster presentation / poster accept
#145
Neural Groundplans: Persistent Neural Scene Representations from a Single Image

Prafull Sharma · Ayush Tewari · Yilun Du · Sergey Zakharov · Rares Ambrus · Adrien Gaidon · William Freeman · Fredo Durand · Joshua B Tenenbaum · Vincent Sitzmann

We present a method to map 2D image observations of a scene to a persistent 3D scene representation, enabling novel view synthesis and disentangled representation of the movable and immovable components of the scene. Motivated by the bird’s-eye-view (BEV) representation commonly used in vision and robotics, we propose conditional neural groundplans, ground-aligned 2D feature grids, as persistent and memory-efficient scene representations. Our method is trained self-supervised from unlabeled multi-view observations using differentiable rendering, and learns to complete geometry and appearance of occluded regions. In addition, we show that we can leverage multi-view videos at training time to learn to separately reconstruct static and movable components of the scene from a single image at test time. The ability to separately reconstruct movable objects enables a variety of downstream tasks using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance-level segmentation, 3D bounding box prediction, and scene editing. This highlights the value of neural groundplans as a backbone for efficient 3D scene understanding models.


In-Person Poster presentation / poster accept
#164
A Multi-Grained Self-Interpretable Symbolic-Neural Model For Single/Multi-Labeled Text Classification

Xiang Hu · XinYu KONG · Kewei Tu

Deep neural networks based on layer-stacking architectures have historically suffered from poor inherent interpretability. Meanwhile, symbolic probabilistic models function with clear interpretability, but how to combine them with neural networks to enhance their performance remains to be explored. In this paper, we try to marry these two systems for text classification via a structured language model. We propose a Symbolic-Neural model that can learn to explicitly predict class labels of text spans from a constituency tree without requiring any access to span-level gold labels. As the structured language model learns to predict constituency trees in a self-supervised manner, only raw texts and sentence-level labels are required as training data, which makes it essentially a general constituent-level self-interpretable classification model. Our experiments demonstrate that our approach could achieve good prediction accuracy in downstream tasks. Meanwhile, the predicted span labels are consistent with human rationales to a certain degree.


In-Person Poster presentation / poster accept
#165
Hyperbolic Self-paced Learning for Self-supervised Skeleton-based Action Representations

Luca Franco · Paolo Mandica · Bharti Munjal · Fabio Galasso

Self-paced learning has been beneficial for tasks where some initial knowledge is available, such as weakly supervised learning and domain adaptation, to select and order the training sample sequence, from easy to complex. However its applicability remains unexplored in unsupervised learning, whereby the knowledge of the task matures during training.We propose a novel HYperbolic Self-Paced model (HYSP) for learning skeletonbased action representations. HYSP adopts self-supervision: it uses data augmentations to generate two views of the same sample, and it learns by matching one (named online) to the other (the target). We propose to use hyperbolic uncertainty to determine the algorithmic learning pace, under the assumption that less uncertain samples should be more strongly driving the training, with a larger weight and pace. Hyperbolic uncertainty is a by-product of the adopted hyperbolic neural networks, it matures during training and it comes with no extra cost, compared to the established Euclidean SSL framework counterparts.When tested on three established skeleton-based action recognition datasets, HYSP outperforms the state-of-the-art on PKU-MMD I, as well as on 2 out of 3 downstream tasks on NTU-60 and NTU-120. Additionally, HYSP only uses positive pairs and bypasses therefore the complex and computationally-demanding mining procedures required for the negatives in contrastive techniques.Code is available at https://github.com/paolomandica/HYSP.


In-Person Poster presentation / poster accept
#147
Identifiability Results for Multimodal Contrastive Learning

Imant Daunhawer · Alice Bizeul · Emanuele Palumbo · Alexander Marx · Julia E Vogt

Contrastive learning is a cornerstone underlying recent progress in multi-view and multimodal learning, e.g., in representation learning with image/caption pairs. While its effectiveness is not yet fully understood, a line of recent work reveals that contrastive learning can invert the data generating process and recover ground truth latent factors shared between views. In this work, we present new identifiability results for multimodal contrastive learning, showing that it is possible to recover shared factors in a more general setup than the multi-view setting studied previously. Specifically, we distinguish between the multi-view setting with one generative mechanism (e.g., multiple cameras of the same type) and the multimodal setting that is characterized by distinct mechanisms (e.g., cameras and microphones). Our work generalizes previous identifiability results by redefining the generative process in terms of distinct mechanisms with modality-specific latent variables. We prove that contrastive learning can block-identify latent factors shared between modalities, even when there are nontrivial dependencies between factors. We empirically verify our identifiability results with numerical simulations and corroborate our findings on a complex multimodal dataset of image/text pairs. Zooming out, our work provides a theoretical basis for multimodal representation learning and explains in which settings multimodal contrastive learning can be effective in practice.


In-Person Poster presentation / poster accept
#166
Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation

Boah Kim · Yujin Oh · Jong Ye

Vessel segmentation in medical images is one of the important tasks in the diagnosis of vascular diseases and therapy planning. Although learning-based segmentation approaches have been extensively studied, a large amount of ground-truth labels are required in supervised methods and confusing background structures make neural networks hard to segment vessels in an unsupervised manner. To address this, here we introduce a novel diffusion adversarial representation learning (DARL) model that leverages a denoising diffusion probabilistic model with adversarial learning, and apply it to vessel segmentation. In particular, for self-supervised vessel segmentation, DARL learns the background signal using a diffusion module, which lets a generation module effectively provide vessel representations. Also, by adversarial learning based on the proposed switchable spatially-adaptive denormalization, our model estimates synthetic fake vessel images as well as vessel segmentation masks, which further makes the model capture vessel-relevant semantic information. Once the proposed model is trained, the model generates segmentation masks in a single step and can be applied to general vascular structure segmentation of coronary angiography and retinal images. Experimental results on various datasets show that our method significantly outperforms existing unsupervised and self-supervised vessel segmentation methods.


In-Person Poster presentation / poster accept
#148
Guiding Safe Exploration with Weakest Preconditions

Greg Anderson · Swarat Chaudhuri · Isil Dillig

In reinforcement learning for safety-critical settings, it is often desirable for the agent to obey safety constraints at all points in time, including during training. We present a novel neurosymbolic approach called SPICE to solve this safe exploration problem. SPICE uses an online shielding layer based on symbolic weakest preconditions to achieve a more precise safety analysis than existing tools without unduly impacting the training process. We evaluate the approach on a suite of continuous control benchmarks and show that it can achieve comparable performance to existing safe learning techniques while incurring fewer safety violations. Additionally, we present theoretical results showing that SPICE converges to the optimal safe policy under reasonable assumptions.