Workshop
Neural Network Weights as a New Data Modality
Konstantin Schürholt · Giorgos Bouritsas · Eliahu Horwitz · Derek Lim · Yoav Gelberg · Bo Zhao · Allan Zhou · Damian Borth · Stefanie Jegelka
The ongoing deep learning revolution of the last decade has brought about hundreds of millions of neural networks (NNs) trained on diverse datasets.At the same time, the recent rise of foundation models has led to a rapid increase in the number of publicly available neural network models. On Hugging Face alone, there are over a million models, with thousands more added daily. As a result, the ample knowledge contained in the data, the abstraction learned via training, as well the trained models' behaviours themselves are stored in the architectures and parameters of trained NNs. Despite this massive growth, little research has been conducted into processing model weights, and they are rarely considered a data modality. This workshop aims to create a community around Weight Space Learning by bringing together the scattered sub-communities that already interface with model weights, with the ultimate goal of democratizing model weights as a proper data modality.
Schedule
|
Sat 6:00 p.m. - 6:30 p.m.
|
Introduction and opening remarks
SlidesLive Video |
Damian Borth 🔗 |
|
Sat 6:30 p.m. - 7:00 p.m.
|
Opening Keynote
(
Invited Talk
)
>
SlidesLive Video |
Haggai Maron 🔗 |
|
Sat 7:00 p.m. - 7:30 p.m.
|
Coffee Break
|
🔗 |
|
Sat 8:00 p.m. - 8:15 p.m.
|
Session 1: Graphs and Symmetries
(
Intro
)
>
SlidesLive Video |
Bo Zhao 🔗 |
|
Sat 8:15 p.m. - 8:45 p.m.
|
Invited Talk - Boris Knyazev
(
Invited Talk
)
>
SlidesLive Video |
Boris Knyazev 🔗 |
|
Sat 8:45 p.m. - 9:15 p.m.
|
Spotlight Session 1
(
Spotlights
)
>
SlidesLive Video |
🔗 |
|
Sat 9:15 p.m. - 10:30 p.m.
|
Lunch Break
|
🔗 |
|
Sat 10:30 p.m. - 10:45 p.m.
|
Session 2 - Representation Learning
(
Intro
)
>
SlidesLive Video |
Konstantin Schürholt 🔗 |
|
Sat 10:45 p.m. - 11:15 p.m.
|
Invited Talk - Stella Yu
(
Invited Talk
)
>
SlidesLive Video |
Stella Yu 🔗 |
|
Sat 11:15 p.m. - 12:00 a.m.
|
Spotlight Session 2
(
Spotlights
)
>
SlidesLive Video |
🔗 |
|
Sun 12:00 a.m. - 12:30 a.m.
|
Coffee Break
|
🔗 |
|
Sun 12:00 a.m. - 1:00 a.m.
|
Poster Session 2
(
Poster Session
)
>
|
🔗 |
|
Sun 1:00 a.m. - 1:15 a.m.
|
Session 3 - Applications
(
Intro
)
>
SlidesLive Video |
Eliahu Horwitz 🔗 |
|
Sun 1:15 a.m. - 1:45 a.m.
|
Invited Talk - Yedid Hoshen
(
Invited Talk
)
>
SlidesLive Video |
Yedid Hoshen 🔗 |
|
Sun 1:45 a.m. - 2:00 a.m.
|
Best Paper Awards
SlidesLive Video |
🔗 |
|
Sun 2:00 a.m. - 2:15 a.m.
|
Closing
SlidesLive Video |
🔗 |
|
-
|
Collaborative Time Series Imputation through Meta-learned Implicit Neural Representations ( Poster ) > link | Tong Nie · Wei Ma 🔗 |
|
-
|
Finding Stable Subnetworks at Initialization with Dataset Distillation ( Poster ) > link | Luke McDermott · Rahul Parhi 🔗 |
|
-
|
GradMetaNet: An Equivariant Architecture for Learning on Gradients ( Poster ) > link | Yoav Gelberg · Yam Eitan · Aviv Navon · Aviv Shamsian · Theo Putterman · Haggai Maron 🔗 |
|
-
|
Learning on Model Weights using Tree Experts ( Poster ) > link | Eliahu Horwitz · Bar Cavia · Jonathan Kahana · Yedid Hoshen 🔗 |
|
-
|
End-to-End Synthesis of Neural Programs in Weight Space ( Poster ) > link | Wenhao Li · Yudong Xu · Elias Khalil · Scott Sanner 🔗 |
|
-
|
Mimetic Initialization of MLPs ( Poster ) > link | Asher Trockman · Zico Kolter 🔗 |
|
-
|
The Space Between: On Folding, Symmetries and Sampling ( Poster ) > link | Michal Lewandowski · Bernhard Heinzl · Raphael Pisoni · Bernhard A. Moser 🔗 |
|
-
|
Shape Generation via Weight Space Learning ( Poster ) > link | Maximilian Plattner · Arturs Berzins · Johannes Brandstetter 🔗 |
|
-
|
Flow to Learn: Flow Matching on Neural Network Parameters ( Poster ) > link | Daniel G. Saragih · Deyu Cao · Tejas Balaji · Ashwin Santhosh 🔗 |
|
-
|
Equivariant Neural Functional Networks for Transformers ( Poster ) > link | Viet-Hoang Tran · Thieu Vo · An Nguyen · Tho-Huu Tran · Minh-Khoi Nguyen-Nhat · Thanh Tran · Duy-Tung Pham · Tan Nguyen 🔗 |
|
-
|
Equivariant Neural Functional Networks for Transformers ( Spotlight ) > link | Viet-Hoang Tran · Thieu Vo · An Nguyen · Tho-Huu Tran · Minh-Khoi Nguyen-Nhat · Thanh Tran · Duy-Tung Pham · Tan Nguyen 🔗 |
|
-
|
Mimetic Initialization Helps State Space Models Learn to Recall ( Poster ) > link | Asher Trockman · Hrayr Harutyunyan · Zico Kolter · Sanjiv Kumar · Srinadh Bhojanapalli 🔗 |
|
-
|
A Single Global Merging Suffices: Recovering Centralized Learning Performance in Decentralized Learning ( Poster ) > link | Tongtian Zhu · Tianyu Zhang · Mingze Wang · Zhanpeng Zhou · Can Wang 🔗 |
|
-
|
TeleLoRA: Teleporting Alignment across Large Language Models for Trojan Mitigation ( Poster ) > link | Xiao Lin · Manoj Acharya · Anirban Roy · Susmit Jha 🔗 |
|
-
|
On Symmetries in Convolutional Weights ( Poster ) > link | Bilal Alsallakh · Timothy Wroge · Vivek Miglani · Narine Kokhlikyan 🔗 |
|
-
|
Scaling Up Parameter Generation: A Recurrent Diffusion Approach ( Poster ) > link | Kai Wang · Dongwen Tang · Wangbo Zhao · Konstantin Schürholt · Zhangyang Wang · Yang You 🔗 |
|
-
|
The Impact of Model Zoo Size and Composition on Weight Space Learning ( Poster ) > link | Damian Falk · Konstantin Schürholt · Damian Borth 🔗 |
|
-
|
Can this Model Also Recognize Dogs? Zero-Shot Model Search from Weights ( Poster ) > link | Jonathan Kahana · Or Nathan · Eliahu Horwitz · Yedid Hoshen 🔗 |
|
-
|
Dataset Size Recovery from Fine-Tuned Model Weights ( Poster ) > link | Mohammad Salama · Jonathan Kahana · Eliahu Horwitz · Yedid Hoshen 🔗 |
|
-
|
Hyper-Align: Efficient Modality Alignment via Hypernetworks ( Poster ) > link | Jaisidh Singh · Diganta Misra · Boris Knyazev · Antonio Orvieto 🔗 |
|
-
|
Unveiling the Potential of Superexpressive Networks in Implicit Neural Representations ( Poster ) > link | Uvini Balasuriya Mudiyanselage · Woojin Cho · Minju Jo · Noseong Park · Kookjin Lee 🔗 |
|
-
|
Adversarial Robustness in Parameter-Space Classifiers ( Poster ) > link | Tamir Shor · Ethan Fetaya · Chaim Baskin · Alex Bronstein 🔗 |
|
-
|
Adversarial Robustness in Parameter-Space Classifiers ( Spotlight ) > link | Tamir Shor · Ethan Fetaya · Chaim Baskin · Alex Bronstein 🔗 |
|
-
|
On the internal representations of graph metanetworks ( Poster ) > link | Taesun Yeom · Jaeho Lee 🔗 |
|
-
|
Model Assembly Learning with Heterogeneous Layer Weight Merging ( Poster ) > link | Yi-Kai Zhang · Jin Wang · Xu-Xiang Zhong · De-Chuan Zhan · Han-Jia Ye 🔗 |
|
-
|
Text-to-Model: Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization ( Poster ) > link | Zexi Li · Lingzhi Gao · Chao Wu 🔗 |
|
-
|
Recursive Self-Similarity in Deep Weight Spaces of Neural Architectures: A Fractal and Coarse Geometry Perspective ( Poster ) > link | Ambarish Moharil · Indika Kumara · Majid Mohammadi · Damian Tamburri · Willem-Jan van den Heuvel 🔗 |
|
-
|
Instruction-Guided Autoregressive Neural Network Parameter Generation ( Poster ) > link | Bedionita Soro · Bruno Andreis · Song Chong · Sung Ju Hwang 🔗 |
|
-
|
Improving Learning to Optimize Using Parameter Symmetries ( Poster ) > link | Guy Zamir · Aryan Dokania · Bo Zhao · Rose Yu 🔗 |
|
-
|
Vanishing Feature: Diagnosing Model Merging and Beyond ( Poster ) > link | Xingyu Qu · Samuel Horváth 🔗 |
|
-
|
Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models ( Poster ) > link | Theo Putterman · Derek Lim · Yoav Gelberg · Stefanie Jegelka · Haggai Maron 🔗 |
|
-
|
Uncovering Latent Chain of Thought Vectors in Large Language Models ( Poster ) > link | Jason Zhang · Scott Viteri 🔗 |
|
-
|
A Model Zoo of Vision Transformers ( Poster ) > link | Damian Falk · Léo Meynent · Lentner · Konstantin Schürholt · Damian Borth 🔗 |
|
-
|
ProDiF: Protecting Domain-Invariant Features to Secure Pre-Trained Models Against Extraction ( Poster ) > link | Tong Zhou · Shijin Duan · Gaowen Liu · Charles Fleming · Ramana Kompella · Shaolei Ren · Xiaolin Xu 🔗 |
|
-
|
A Model Zoo on Phase Transitions in Neural Networks ( Poster ) > link | Konstantin Schürholt · Léo Meynent · Yefan Zhou · Yaoqing Yang · Damian Borth 🔗 |
|
-
|
Fusion of Graph Neural Networks via Optimal Transport ( Poster ) > link | Weronika Ormaniec · Michael Vollenweider · Elisa Hoskovec 🔗 |
|
-
|
Can We Optimize Deep RL Policy Weights as Trajectory Modeling? ( Poster ) > link | Hongyao Tang 🔗 |
|
-
|
GNNMERGE: MERGING OF GNN MODELS WITHOUT ACCESSING TRAINING DATA ( Poster ) > link | Vipul Garg · Ishita Thakre · Sayan Ranu 🔗 |
|
-
|
The Empirical Impact of Reducing Symmetries on the Performance of Deep Ensembles and MoE ( Poster ) > link | Andrei Chernov · Oleg Novitskij 🔗 |
|
-
|
ARC: Anchored Representation Clouds for High-Resolution INR Classification ( Poster ) > link | Joost Luijmes · Alexander Gielisse · Roman Knyazhitskiy · Jan Gemert 🔗 |
|
-
|
Model Diffusion for Certifiable Few-shot Transfer Learning ( Poster ) > link | Fady Rezk · Royson Lee · Henry Gouk · Timothy Hospedales · Minyoung Kim 🔗 |
|
-
|
Model Diffusion for Certifiable Few-shot Transfer Learning ( Spotlight ) > link | Fady Rezk · Royson Lee · Henry Gouk · Timothy Hospedales · Minyoung Kim 🔗 |
|
-
|
Structure Is Not Enough: Leveraging Behavior for Neural Network Weight Reconstruction ( Poster ) > link | Léo Meynent · Ivan Melev · Konstantin Schürholt · Goeran Kauermann · Damian Borth 🔗 |
|
-
|
Compressive Meta-Learning ( Poster ) > link | Daniel Mas Montserrat · David Bonet · Maria Perera · Xavier Giró-i-Nieto · Alexander Ioannidis 🔗 |
|
-
|
Cost-Efficient Continual Learning with Sufficient Exemplar Memory ( Poster ) > link | Dongkyu Cho · Taesup Moon · Rumi Chunara · Kyunghyun Cho · Sungmin Cha 🔗 |
|
-
|
Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces ( Poster ) > link | Yihuai Hong · Lei Yu · Haiqin Yang · Shauli Ravfogel · Mor Geva 🔗 |
|
-
|
Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space ( Poster ) > link | Vinicius Hernandes · Thomas Spriggs · Saqar Khaleefah · Eliska Greplova 🔗 |
|
-
|
Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space ( Spotlight ) > link | Vinicius Hernandes · Thomas Spriggs · Saqar Khaleefah · Eliska Greplova 🔗 |
|
-
|
Integrating Meta-Trained Hypernetworks with GBDTs and Retrieval for Tabular Data ( Poster ) > link | David Bonet · Marçal Comajoan Cara · Alvaro Calafell · Daniel Mas Montserrat · Alexander Ioannidis 🔗 |
|
-
|
Integrating Meta-Trained Hypernetworks with GBDTs and Retrieval for Tabular Data ( Spotlight ) > link | David Bonet · Marçal Comajoan Cara · Alvaro Calafell · Daniel Mas Montserrat · Alexander Ioannidis 🔗 |