Opening Remarks Mon 25 Apr 07:00 a.m.
The organizing committee of ICLR 2022 would like to welcome everyone to the virtual conference. In this opening remarks, we will discuss the overall program of the conference, the review process, the best paper award, the DEI outreaching activity, and the new blog track.
There is no live Q&A for this event.
Invited Talk: Pushmeet Kohli
Scientific advances over the last several centuries have not only expanded our understanding of the world, but have also raised the standard of living for many people across the globe. However, there are still massive challenges facing humanity, as evidenced by climate change and the COVID-19 pandemic. One of the difficulties of modern science is to make sense of the vast amount of information we’ve gathered about the world - from the Large Hadron Collider to massive genome projects—it’s impossible for any individual person to comprehend it all.
In this talk, I will discuss how AI (and techniques like Machine Learning) can contribute to progress on challenging and important problems in a wide range of scientific disciplines - from genomics and structural biology to quantum chemistry and even pure mathematics.
Bio :
Poster Session 1 Mon 25 Apr 09:30 a.m.
[ Virtual ]

We present ReCo, a contrastive learning framework designed at a regional level to assist learning in semantic segmentation. ReCo performs pixel-level contrastive learning on a sparse set of hard negative pixels, with minimal additional memory footprint. ReCo is easy to implement, being built on top of off-the-shelf segmentation networks, and consistently improves performance, achieving more accurate segmentation boundaries and faster convergence. The strongest effect is in semi-supervised learning with very few labels. With ReCo, we achieve high quality semantic segmentation model, requiring only 5 examples of each semantic class.
[ Virtual ]

Improving sample-efficiency and safety are crucial challenges when deploying reinforcement learning in high-stakes real world applications. We propose LAMBDA, a novel model-based approach for policy optimization in safety critical tasks modeled via constrained Markov decision processes. Our approach utilizes Bayesian world models, and harnesses the resulting uncertainty to maximize optimistic upper bounds on the task objective, as well as pessimistic upper bounds on the safety constraints. We demonstrate LAMBDA's state of the art performance on the Safety-Gym benchmark suite in terms of sample efficiency and constraint violation.
[ Virtual ]

Randomized ensembled double Q-learning (REDQ) (Chen et al., 2021b) has recently achieved state-of-the-art sample efficiency on continuous-action reinforcement learning benchmarks. This superior sample efficiency is made possible by using a large Q-function ensemble. However, REDQ is much less computationally efficient than non-ensemble counterparts such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018a). To make REDQ more computationally efficient, we propose a method of improving computational efficiency called DroQ, which is a variant of REDQ that uses a small ensemble of dropout Q-functions. Our dropout Q-functions are simple Q-functions equipped with dropout connection and layer normalization. Despite its simplicity of implementation, our experimental results indicate that DroQ is doubly (sample and computationally) efficient. It achieved comparable sample efficiency with REDQ, much better computational efficiency than REDQ, and comparable computational efficiency with that of SAC.
[ Virtual ]

A probabilistic classifier with reliable predictive uncertainties i) fits successfully to the target domain data, ii) provides calibrated class probabilities in difficult regions of the target domain (e.g. class overlap), and iii) accurately identifies queries coming out of the target domain and reject them. We introduce an original combination of Evidential Deep Learning, Neural Processes, and Neural Turing Machines capable of providing all three essential properties mentioned above for total uncertainty quantification. We observe our method on three image classification benchmarks to consistently improve the in-domain uncertainty quantification, out-of-domain detection, and robustness against input perturbations with one single model. Our unified solution delivers an implementation-friendly and computationally efficient recipe for safety clearance and provides intellectual economy to an investigation of algorithmic roots of epistemic awareness in deep neural nets.
[ Virtual ]

Researchers are using deep learning models to explore the emergence of language in various language games, where agents interact and develop an emergent language to solve tasks. We focus on the factors that determine the expressivity of emergent languages, which reflects the amount of information about input spaces those languages are capable of encoding. We measure the expressivity of emergent languages based on the generalisation performance across different games, and demonstrate that the expressivity of emergent languages is a trade-off between the complexity and unpredictability of the context those languages emerged from. Another contribution of this work is the discovery of message type collapse, i.e. the number of unique messages is lower than that of inputs. We also show that using the contrastive loss proposed by Chen et al. (2020) can alleviate this problem.
[ Virtual ]

We leverage logical composition in reinforcement learning to create a framework that enables an agent to autonomously determine whether a new task can be immediately solved using its existing abilities, or whether a task-specific skill should be learned. In the latter case, the proposed algorithm also enables the agent to learn the new task faster by generating an estimate of the optimal policy. Importantly, we provide two main theoretical results: we bound the performance of the transferred policy on a new task, and we give bounds on the necessary and sufficient number of tasks that need to be learned throughout an agent's lifetime to generalise over a distribution. We verify our approach in a series of experiments, where we perform transfer learning both after learning a set of base tasks, and after learning an arbitrary set of tasks. We also demonstrate that, as a side effect of our transfer learning approach, an agent can produce an interpretable Boolean expression of its understanding of the current task. Finally, we demonstrate our approach in the full lifelong setting where an agent receives tasks from an unknown distribution. Starting from scratch, an agent is able to quickly generalise over the task distribution after …
[ Virtual ]

Humans excel at continually learning from an ever-changing environment whereas it remains a challenge for deep neural networks which exhibit catastrophic forgetting. The complementary learning system (CLS) theory suggests that the interplay between rapid instance-based learning and slow structured learning in the brain is crucial for accumulating and retaining knowledge. Here, we propose CLS-ER, a novel dual memory experience replay (ER) method which maintains short-term and long-term semantic memories that interact with the episodic memory. Our method employs an effective replay mechanism whereby new knowledge is acquired while aligning the decision boundaries with the semantic memories. CLS-ER does not utilize the task boundaries or make any assumption about the distribution of the data which makes it versatile and suited for ``general continual learning''. Our approach achieves state-of-the-art performance on standard benchmarks as well as more realistic general continual learning settings.
[ Virtual ]

Our goal is to recover time-delayed latent causal variables and identify their relations from measured temporal data. Estimating causally-related latent variables from observations is particularly challenging as the latent variables are not uniquely recoverable in the most general case. In this work, we consider both a nonparametric, nonstationary setting and a parametric setting for the latent processes and propose two provable conditions under which temporally causal latent processes can be identified from their nonlinear mixtures. We propose LEAP, a theoretically-grounded framework that extends Variational AutoEncoders (VAEs) by enforcing our conditions through proper constraints in causal process prior. Experimental results on various datasets demonstrate that temporally causal latent processes are reliably identified from observed variables under different dependency structures and that our approach considerably outperforms baselines that do not properly leverage history or nonstationarity information. This demonstrates that using temporal information to learn latent processes from their invertible nonlinear mixtures in an unsupervised manner, for which we believe our work is one of the first, seems promising even without sparsity or minimality assumptions.
[ Virtual ]

Understanding the performance of machine learning models across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. While valuable, the existing benchmarks are limited in that many of them only contain a small number of shifts and they lack systematic annotation about what is different across different shifts. We present MetaShift—a collection of 12,868 sets of natural images across 410 classes—to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. “cats with cars” or “cats in bathroom”) that represent distinct data distributions. MetaShift has two important benefits: first, it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. We demonstrate the utility of MetaShift in benchmarking several recent proposals for training models to be robust to data shifts. We find that the simple …
[ Virtual ]

[ Virtual ]

Denoising diffusion probabilistic models have been recently proposed to generate high-quality samples by estimating the gradient of the data density. The framework assumes the prior noise as a standard Gaussian distribution, whereas the corresponding data distribution may be more complicated than the standard Gaussian distribution, which potentially introduces inefficiency in denoising the prior noise into the data sample because of the discrepancy between the data and the prior. In this paper, we propose PriorGrad to improve the efficiency of the conditional diffusion model (for example, a vocoder using a mel-spectrogram as the condition) by applying an adaptive prior derived from the data statistics based on the conditional information. We formulate the training and sampling procedures of PriorGrad and demonstrate the advantages of an adaptive prior through a theoretical analysis. Focusing on the audio domain, we consider the recently proposed diffusion-based audio generative models based on both the spectral and time domains and show that PriorGrad achieves faster convergence and superior performance, leading to an improved perceptual quality and tolerance to a smaller network capacity, and thereby demonstrating the efficiency of a data-dependent adaptive prior.
[ Virtual ]

[ Virtual ]

In this paper, we conjecture that if the permutation invariance of neural networks is taken into account, SGD solutions will likely have no barrier in the linear interpolation between them. Although it is a bold conjecture, we show how extensive empirical attempts fall short of refuting it. We further provide a preliminary theoretical result to support our conjecture. Our conjecture has implications for the lottery ticket hypothesis, distributed training, and ensemble methods. The source code is available at \url{https://github.com/rahimentezari/PermutationInvariance}.
[ Virtual ]

This paper proposes an algorithm, RMDA, for training neural networks (NNs) with a regularization term for promoting desired structures. RMDA does not incur computation additional to proximal SGD with momentum, and achieves variance reduction without requiring the objective function to be of the finite-sum form. Through the tool of manifold identification from nonlinear optimization, we prove that after a finite number of iterations, all iterates of RMDA possess a desired structure identical to that induced by the regularizer at the stationary point of asymptotic convergence, even in the presence of engineering tricks like data augmentation that complicate the training process. Experiments on training NNs with structured sparsity confirm that variance reduction is necessary for such an identification, and show that RMDA thus significantly outperforms existing methods for this task. For unstructured sparsity, RMDA also outperforms a state-of-the-art pruning method, validating the benefits of training structured NNs through regularization. Implementation of RMDA is available at https://www.github.com/zihsyuan1214/rmda.
[ Virtual ]

Recently Graph Injection Attack (GIA) emerges as a practical attack scenario on Graph Neural Networks (GNNs), where the adversary can merely inject few malicious nodes instead of modifying existing nodes or edges, i.e., Graph Modification Attack (GMA). Although GIA has achieved promising results, little is known about why it is successful and whether there is any pitfall behind the success. To understand the power of GIA, we compare it with GMA and find that GIA can be provably more harmful than GMA due to its relatively high flexibility. However, the high flexibility will also lead to great damage to the homophily distribution of the original graph, i.e., similarity among neighbors. Consequently, the threats of GIA can be easily alleviated or even prevented by homophily-based defenses designed to recover the original homophily. To mitigate the issue, we introduce a novel constraint – homophily unnoticeability that enforces GIA to preserve the homophily, and propose Harmonious Adversarial Objective (HAO) to instantiate it. Extensive experiments verify that GIA with HAO can break homophily-based defenses and outperform previous GIA attacks by a significant margin. We believe our methods can serve for a more reliable evaluation of the robustness of GNNs.
[ Virtual ]

Positive and Unlabeled (PU) learning targets inducing a binary classifier from weak training datasets of positive and unlabeled instances, which arise in many real-world applications. In this paper, we propose a novel PU learning method, namely Positive and unlabeled learning with Partially Positive Mixup (P3Mix), which simultaneously benefits from data augmentation and supervision correction with a heuristic mixup technique. To be specific, we take inspiration from the directional boundary deviation phenomenon observed in our preliminary experiments, where the learned PU boundary tends to deviate from the fully supervised boundary towards the positive side. For the unlabeled instances with ambiguous predictive results, we select their mixup partners from the positive instances around the learned PU boundary, so as to transform them into augmented instances near to the boundary yet with more precise supervision. Accordingly, those augmented instances may push the learned PU boundary towards the fully supervised boundary, thereby improving the classification performance. Comprehensive experimental results demonstrate the effectiveness of the heuristic mixup technique in PU learning and show that P3Mix can consistently outperform the state-of-the-art PU learning methods.

Stateful optimizers maintain gradient statistics over time, e.g., the exponentially smoothed sum (SGD with momentum) or squared sum (Adam) of past gradient values. This state can be used to accelerate optimization significantly, compared to plain stochastic gradient descent, but uses memory that might otherwise be allocated to model parameters, thereby limiting the maximum size of models trained in practice. In this paper, we develop the first optimizers that use 8-bit statistics while maintaining the performance levels of using 32-bit optimizer states. To overcome the resulting computational, quantization, and stability challenges, we develop block-wise dynamic quantization. Block-wise quantization divides input tensors into smaller blocks that are independently quantized. Each block is processed in parallel across cores, yielding faster optimization and high precision quantization. To maintain stability and performance, we combine block-wise quantization with two additional changes: (1) dynamic quantization, a form of non-linear optimization that is precise for both large and small magnitude values, and (2) a stable embedding layer to reduce gradient variance that comes from the highly non-uniform distribution of input tokens in language models. As a result, our 8-bit optimizers maintain 32-bit performance with a small fraction of the memory footprint on a range of tasks, including 1.5B …

Current dense text retrieval models face two typical challenges. First, it adopts a siamese dual-encoder architecture to encode query and document independently for fast indexing and searching, whereas neglecting the finer-grained term-wise interactions. This results in a sub-optimal recall performance. Second, it highly relies on a negative sampling technique to build up the negative documents in its contrastive loss. To address these challenges, we present Adversarial Retriever-Ranker (AR2), which consists of a dual-encoder retriever plus a cross-encoder ranker. The two models are jointly optimized according to a minimax adversarial objective: the retriever learns to retrieve negative documents to cheat the ranker, while the ranker learns to rank a collection of candidates including both the ground-truth and the retrieved ones, as well as providing progressive direct feedback to the dual-encoder retriever. Through this adversarial game, the retriever gradually produces harder negative documents to train a better ranker, whereas the cross-encoder ranker provides progressive feedback to improve retriever. We evaluate AR2 on three benchmarks. Experimental results show that AR2 consistently and significantly outperforms existing dense retriever methods and achieves new state-of-the-art results on all of them. This includes the improvements on Natural Questions R@5 to 77.9%(+2.1%), TriviaQA R@5 to 78.2%(+1.4), and MS-MARCO …
Robustness to distribution shifts is critical for deploying machine learning models in the real world. Despite this necessity, there has been little work in defining the underlying mechanisms that cause these shifts and evaluating the robustness of algorithms across multiple, different distribution shifts. To this end, we introduce a framework that enables fine-grained analysis of various distribution shifts. We provide a holistic analysis of current state-of-the-art methods by evaluating 19 distinct methods grouped into five categories across both synthetic and real-world datasets. Overall, we train more than 85K models. Our experimental framework can be easily extended to include new methods, shifts, and datasets. We find, unlike previous work (Gulrajani & Lopez-Paz, 2021), that progress has been made over a standard ERM baseline; in particular, pretraining and augmentations (learned or heuristic) offer large gains in many cases. However, the best methods are not consistent over different datasets and shifts. We will open source our experimental framework, allowing future work to evaluate new methods over multiple shifts to obtain a more complete picture of a method's effectiveness. Code is available at github.com/deepmind/distributionshiftframework.


Anytime inference requires a model to make a progression of predictions which might be halted at any time. Prior research on anytime visual recognition has mostly focused on image classification.We propose the first unified and end-to-end approach for anytime dense prediction. A cascade of "exits" is attached to the model to make multiple predictions. We redesign the exits to account for the depth and spatial resolution of the features for each exit. To reduce total computation, and make full use of prior predictions, we develop a novel spatially adaptive approach to avoid further computation on regions where early predictions are already sufficiently confident. Our full method, named anytime dense prediction with confidence (ADP-C), achieves the same level of final accuracy, and meanwhile significantly reduces total computation. We evaluate our method on Cityscapes semantic segmentation and MPII human pose estimation: ADP-C enables anytime inference without sacrificing accuracy while also reducing the total FLOPs of its base models by 44.4% and 59.1%. We compare with anytime inference by deep equilibrium networks and feature-based stochastic sampling, showing that ADP-C dominates both across the accuracy-computation curve. Our code is available at https://github.com/liuzhuang13/anytime.

We introduce Autoregressive Diffusion Models (ARDMs), a model class encompassing and generalizing order-agnostic autoregressive models (Uria et al., 2014) and absorbing discrete diffusion (Austin et al., 2021), which we show are special cases of ARDMs under mild assumptions. ARDMs are simple to implement and easy to train. Unlike standard ARMs, they do not require causal masking of model representations, and can be trained using an efficient objective similar to modern probabilistic diffusion models that scales favourably to highly-dimensional data. At test time, ARDMs support parallel generation which can be adapted to fit any given generation budget. We find that ARDMs require significantly fewer steps than discrete diffusion models to attain the same performance. Finally, we apply ARDMs to lossless compression, and show that they are uniquely suited to this task. Contrary to existing approaches based on bits-back coding, ARDMs obtain compelling results not only on complete datasets, but also on compressing single data points. Moreover, this can be done using a modest number of network calls for (de)compression due to the model's adaptable parallel generation.

Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, it is unclear whether these priors accurately reflect our true beliefs about the weight distributions or give optimal performance. To find better priors, we study summary statistics of neural network weights in networks trained using stochastic gradient descent (SGD). We find that convolutional neural network (CNN) and ResNet weights display strong spatial correlations, while fully connected networks (FCNNs) display heavy-tailed weight distributions. We show that building these observations into priors can lead to improved performance on a variety of image classification datasets. Surprisingly, these priors mitigate the cold posterior effect in FCNNs, but slightly increase the cold posterior effect in ResNets.

Curriculum value-based reinforcement learning (RL) solves a complex target task by reusing action-values across a tailored sequence of related tasks of increasing difficulty. However, finding an exact way of reusing action-values in this setting is still a poorly understood problem. In this paper, we introduce the concept of boosting to curriculum value-based RL, by approximating the action-value function as a sum of residuals trained on each task. This approach, which we refer to as boosted curriculum reinforcement learning (BCRL), has the benefit of naturally increasing the representativeness of the functional space by adding a new residual each time a new task is presented. This procedure allows reusing previous action-values while promoting expressiveness of the action-value function. We theoretically study BCRL as an approximate value iteration algorithm, discussing advantages over regular curriculum RL in terms of approximation accuracy and convergence to the optimal action-value function. Finally, we provide detailed empirical evidence of the benefits of BCRL in problems requiring curricula for accurate action-value estimation and targeted exploration.


Class-conditioning offers a direct means to control a Generative Adversarial Network (GAN) based on a discrete input variable. While necessary in many applications, the additional information provided by the class labels could even be expected to benefit the training of the GAN itself. On the contrary, we observe that class-conditioning causes mode collapse in limited data settings, where unconditional learning leads to satisfactory generative ability. Motivated by this observation, we propose a training strategy for class-conditional GANs (cGANs) that effectively prevents the observed mode-collapse by leveraging unconditional learning. Our training strategy starts with an unconditional GAN and gradually injects the class conditioning into the generator and the objective function. The proposed method for training cGANs with limited data results not only in stable training but also in generating high-quality images, thanks to the early-stage exploitation of the shared information across classes. We analyze the observed mode collapse problem in comprehensive experiments on four datasets. Our approach demonstrates outstanding results compared with state-of-the-art methods and established baselines. The code is available at https://github.com/mshahbazi72/transitional-cGAN


Physics-inspired neural networks (NNs), such as Hamiltonian or Lagrangian NNs, dramatically outperform other learned dynamics models by leveraging strong inductive biases. These models, however, are challenging to apply to many real world systems, such as those that don’t conserve energy or contain contacts, a common setting for robotics and reinforcement learning. In this paper, we examine the inductive biases that make physics-inspired models successful in practice. We show that, contrary to conventional wisdom, the improved generalization of HNNs is the result of modeling acceleration directly and avoiding artificial complexity from the coordinate system, rather than symplectic structure or energy conservation. We show that by relaxing the inductive biases of these models, we can match or exceed performance on energy-conserving systems while dramatically improving performance on practical, non-conservative systems. We extend this approach to constructing transition models for common Mujoco environments, showing that our model can appropriately balance inductive biases with the flexibility required for model-based control.


Learning the structure of a causal graphical model using both observational and interventional data is a fundamental problem in many scientific fields. A promising direction is continuous optimization for score-based methods, which, however, require constrained optimization to enforce acyclicity or lack convergence guarantees. In this paper, we present ENCO, an efficient structure learning method for directed, acyclic causal graphs leveraging observational and interventional data. ENCO formulates the graph search as an optimization of independent edge likelihoods, with the edge orientation being modeled as a separate parameter. Consequently, we provide for ENCO convergence guarantees under mild conditions, without having to constrain the score function with respect to acyclicity. In experiments, we show that ENCO can efficiently recover graphs with hundreds of nodes, an order of magnitude larger than what was previously possible, while handling deterministic variables and discovering latent confounders.

Even though fine-grained pruning techniques achieve a high compression ratio, conventional sparsity representations (such as CSR) associated with irregular sparsity degrade parallelism significantly. Practical pruning methods, thus, usually lower pruning rates (by structured pruning) to improve parallelism. In this paper, we study fixed-to-fixed (lossless) encoding architecture/algorithm to support fine-grained pruning methods such that sparse neural networks can be stored in a highly regular structure. We first estimate the maximum compression ratio of encoding-based compression using entropy. Then, as an effort to push the compression ratio to the theoretical maximum (by entropy), we propose a sequential fixed-to-fixed encoding scheme. We demonstrate that our proposed compression scheme achieves almost the maximum compression ratio for the Transformer and ResNet-50 pruned by various fine-grained pruning methods.

We propose a novel probabilistic model over hierarchies on graphs obtained by continuous relaxation of tree-based hierarchies. We draw connections to Markov chain theory, enabling us to perform hierarchical clustering by efficient end-to-end optimization of relaxed versions of quality metrics such as Dasgupta cost or Tree-Sampling Divergence (TSD). We show that our model learns rich, high-quality hierarchies present in 11 real world graphs, including a large graph with 2.3M nodes. Our model consistently outperforms recent as well as strong traditional baselines such as average linkage. Our model also obtains strong results on link prediction despite not being trained on this task, highlighting the quality of the hierarchies discovered by our model.

Valuation problems, such as feature interpretation, data valuation and model valuation for ensembles, become increasingly more important in many machine learning applications. Such problems are commonly solved by well-known game-theoretic criteria, such as Shapley value or Banzhaf value. In this work, we present a novel energy-based treatment for cooperative games, with a theoretical justification by the maximum entropy framework. Surprisingly, by conducting variational inference of the energy-based model, we recover various game-theoretic valuation criteria through conducting one-step fixed point iteration for maximizing the mean-field ELBO objective. This observation also verifies the rationality of existing criteria, as they are all attempting to decouple the correlations among the players through the mean-field approach. By running fixed point iteration for multiple steps, we achieve a trajectory of the valuations, among which we define the valuation with the best conceivable decoupling error as the Variational Index. We prove that under uniform initializations, these variational valuations all satisfy a set of game-theoretic axioms. We experimentally demonstrate that the proposed Variational Index enjoys lower decoupling error and better valuation performance on certain synthetic and real-world valuation problems.

With the discovery of Wasserstein GANs, Optimal Transport (OT) has become a powerful tool for large-scale generative modeling tasks. In these tasks, OT cost is typically used as the loss for training GANs. In contrast to this approach, we show that the OT map itself can be used as a generative model, providing comparable performance. Previous analogous approaches consider OT maps as generative models only in the latent spaces due to their poor performance in the original high-dimensional ambient space. In contrast, we apply OT maps directly in the ambient space, e.g., a space of high-dimensional images. First, we derive a min-max optimization algorithm to efficiently compute OT maps for the quadratic cost (Wasserstein-2 distance). Next, we extend the approach to the case when the input and output distributions are located in the spaces of different dimensions and derive error bounds for the computed OT map. We evaluate the algorithm on image generation and unpaired image restoration tasks. In particular, we consider denoising, colorization, and inpainting, where the optimality of the restoration map is a desired attribute, since the output (restored) image is expected to be close to the input (degraded) one.

We consider the problem of goal-directed planning under a deterministic transition model. Monte Carlo Tree Search has shown remarkable performance in solving deterministic control problems. It has been extended from complex continuous domains through function approximators to bias the search of the planning tree in AlphaZero. Nonetheless, these algorithms still struggle with control problems with sparse rewards, such as goal-directed domains, where a positive reward is awarded only when reaching a goal state. In this work, we recast AlphaZero with Hindsight Experience Replay to tackle complex goal-directed planning tasks. We perform a thorough empirical evaluation in several simulated domains, including a novel application to a quantum compiling domain.


Neural memory enables fast adaptation to new tasks with just a few training samples. Existing memory models store features only from the single last layer, which does not generalize well in presence of a domain shift between training and test distributions. Rather than relying on a flat memory, we propose a hierarchical alternative that stores features at different semantic levels. We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory. The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand. We meta-learn the model by a newly derived hierarchical variational inference framework, where hierarchical memory and prototypes are jointly optimized. To explore and exploit the importance of different semantic levels, we further propose to learn the weights associated with the prototype at each level in a data-driven way, which enables the model to adaptively choose the most generalizable features. We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model. The new state-of-the-art performance on cross-domain and competitive performance on traditional few-shot classification further substantiates the benefit of hierarchical variational memory.


Communication is a key bottleneck in federated learning where a large number of edge devices collaboratively learn a model under the orchestration of a central server without sharing their own training data. While local SGD has been proposed to reduce the number of FL rounds and become the algorithm of choice for FL, its total communication cost is still prohibitive when each device needs to communicate with the remote server repeatedly for many times over bandwidth-limited networks. In light of both device-to-device (D2D) and device-to-server (D2S) cooperation opportunities in modern communication networks, this paper proposes a new federated optimization algorithm dubbed hybrid local SGD (HL-SGD) in FL settings where devices are grouped into a set of disjoint clusters with high D2D communication bandwidth. HL-SGD subsumes previous proposed algorithms such as local SGD and gossip SGD and enables us to strike the best balance between model accuracy and runtime. We analyze the convergence of HL-SGD in the presence of heterogeneous data for general nonconvex settings. We also perform extensive experiments and show that the use of hybrid model aggregation via D2D and D2S communications in HL-SGD can largely speed up the training time of federated learning.

Continuous-depth neural networks, such as Neural ODEs, have refashioned the understanding of residual neural networks in terms of non-linear vector-valued optimal control problems. The common solution is to use the adjoint sensitivity method to replicate a forward-backward pass optimisation problem. We propose a new approach which explicates the network's depth' as a fundamental variable, thus reducing the problem to a system of forward-facing initial value problems. This new method is based on the principal of
Invariant Imbedding' for which we prove a general solution, applicable to all non-linear, vector-valued optimal control problems with both running and terminal loss.Our new architectures provide a tangible tool for inspecting the theoretical--and to a great extent unexplained--properties of network depth. They also constitute a resource of discrete implementations of Neural ODEs comparable to classes of imbedded residual neural networks. Through a series of experiments, we show the competitive performance of the proposed architectures for supervised learning and time series prediction.

We propose a family of adaptive integer compression operators for distributed Stochastic Gradient Descent (SGD) that do not communicate a single float. This is achieved by multiplying floating-point vectors with a number known to every device and then rounding to integers. In contrast to the prior work on integer compression for SwitchML by (Sapio et al., 2021), our IntSGD method is provably convergent and computationally cheaper as it estimates the scaling of vectors adaptively. Our theory shows that the iteration complexity of IntSGD matches that of SGD up to constant factors for both convex and non-convex, smooth and non-smooth functions, with and without overparameterization. Moreover, our algorithm can also be tailored for the popular all-reduce primitive and shows promising empirical performance.

The Shapley value is one of the most widely used measures of feature importance partly as it measures a feature's average effect on a model's prediction. We introduce joint Shapley values, which directly extend Shapley's axioms and intuitions: joint Shapley values measure a set of features' average effect on a model's prediction. We prove the uniqueness of joint Shapley values, for any order of explanation. Results for games show that joint Shapley values present different insights from existing interaction indices, which assess the effect of a feature within a set of features. The joint Shapley values seem to provide sensible results in ML attribution problems. With binary features, we present a presence-adjusted global value that is more consistent with local intuitions than the usual approach.

Many practical applications of reinforcement learning require agents to learn from sparse and delayed rewards. It challenges the ability of agents to attribute their actions to future outcomes. In this paper, we consider the problem formulation of episodic reinforcement learning with trajectory feedback. It refers to an extreme delay of reward signals, in which the agent can only obtain one reward signal at the end of each trajectory. A popular paradigm for this problem setting is learning with a designed auxiliary dense reward function, namely proxy reward, instead of sparse environmental signals. Based on this framework, this paper proposes a novel reward redistribution algorithm, randomized return decomposition (RRD), to learn a proxy reward function for episodic reinforcement learning. We establish a surrogate problem by Monte-Carlo sampling that scales up least-squares-based reward redistribution to long-horizon problems. We analyze our surrogate loss function by connection with existing methods in the literature, which illustrates the algorithmic properties of our approach. In experiments, we extensively evaluate our proposed method on a variety of benchmark tasks with episodic rewards and demonstrate substantial improvement over baseline algorithms.

We introduce Synthetic Environments (SEs) and Reward Networks (RNs), represented by neural networks, as proxy environment models for training Reinforcement Learning (RL) agents. We show that an agent, after being trained exclusively on the SE, is able to solve the corresponding real environment. While an SE acts as a full proxy to a real environment by learning about its state dynamics and rewards, an RN is a partial proxy that learns to augment or replace rewards. We use bi-level optimization to evolve SEs and RNs: the inner loop trains the RL agent, and the outer loop trains the parameters of the SE / RN via an evolution strategy. We evaluate our proposed new concept on a broad range of RL algorithms and classic control environments. In a one-to-one comparison, learning an SE proxy requires more interactions with the real environment than training agents only on the real environment. However, once such an SE has been learned, we do not need any interactions with the real environment to train new agents. Moreover, the learned SE proxies allow us to train agents with fewer interactions while maintaining the original task performance. Our empirical results suggest that SEs achieve this result by learning …

We strive to learn a model from a set of source domains that generalizes well to unseen target domains. The main challenge in such a domain generalization scenario is the unavailability of any target domain data during training, resulting in the learned model not being explicitly adapted to the unseen target domains. We propose learning to generalize across domains on single test samples. We leverage a meta-learning paradigm to learn our model to acquire the ability of adaptation with single samples at training time so as to further adapt itself to each single test sample at test time. We formulate the adaptation to the single test sample as a variational Bayesian inference problem, which incorporates the test sample as a conditional into the generation of model parameters. The adaptation to each test sample requires only one feed-forward computation at test time without any fine-tuning or self-supervised training on additional data from the unseen domains. Extensive ablation studies demonstrate that our model learns the ability to adapt models to each single sample by mimicking domain shifts during training. Further, our model achieves at least comparable -- and often better -- performance than state-of-the-art methods on multiple benchmarks for domain generalization.

Self-supervised visual representation learning has recently attracted significant research interest. While a common way to evaluate self-supervised representations is through transfer to various downstream tasks, we instead investigate the problem of measuring their interpretability, i.e. understanding the semantics encoded in raw representations. We formulate the latter as estimating the mutual information between the representation and a space of manually labelled concepts. To quantify this we introduce a decoding bottleneck: information must be captured by simple predictors, mapping concepts to clusters in representation space. This approach, which we call reverse linear probing, provides a single number sensitive to the semanticity of the representation. This measure is also able to detect when the representation contains combinations of concepts (e.g., "red apple'') instead of just individual attributes ("red'' and "apple'' independently). Finally, we propose to use supervised classifiers to automatically label large datasets in order to enrich the space of concepts used for probing. We use our method to evaluate a large number of self-supervised representations, ranking them by interpretability, highlight the differences that emerge compared to the standard evaluation with linear probes and discuss several qualitative insights. Code at: https://github.com/iro-cp/ssl-qrp.

Continual learning needs to overcome catastrophic forgetting of the past. Memory replay of representative old training samples has been shown as an effective solution, and achieves the state-of-the-art (SOTA) performance. However, existing work is mainly built on a small memory buffer containing a few original data, which cannot fully characterize the old data distribution. In this work, we propose memory replay with data compression to reduce the storage cost of old training samples and thus increase their amount that can be stored in the memory buffer. Observing that the trade-off between the quality and quantity of compressed data is highly nontrivial for the efficacy of memory replay, we propose a novel method based on determinantal point processes (DPPs) to efficiently determine an appropriate compression quality for currently-arrived training samples. In this way, using a naive data compression algorithm with a properly selected quality can largely boost recent strong baselines by saving more compressed data in a limited storage space. We extensively validate this across several benchmarks of class-incremental learning and in a realistic scenario of object detection for autonomous driving.
The performance of existing text style transfer models is severely limited by the non-parallel datasets on which the models are trained. In non-parallel datasets, no direct mapping exists between sentences of the source and target style; the style transfer models thus only receive weak supervision of the target sentences during training, which often leads the model to discard too much style-independent information, or utterly fail to transfer the style.In this work, we propose LaMer, a novel text style transfer framework based on large-scale language models. LaMer first mines the roughly parallel expressions in the non-parallel datasets with scene graphs, and then employs MLE training, followed by imitation learning refinement, to leverage the intrinsic parallelism within the data. On two benchmark tasks (sentiment & formality transfer) and a newly proposed challenging task (political stance transfer), our model achieves qualitative advances in transfer accuracy, content preservation, and fluency. Further empirical and human evaluations demonstrate that our model not only makes training more efficient, but also generates more readable and diverse expressions than previous models.

We explain why directly changing the prior can be a surprisingly ineffective mechanism for incorporating inductive biases into variational auto-encoders (VAEs), and introduce a simple and effective alternative approach: Intermediary Latent Space VAEs (InteL-VAEs). InteL-VAEs use an intermediary set of latent variables to control the stochasticity of the encoding process, before mapping these in turn to the latent representation using a parametric function that encapsulates our desired inductive bias(es). This allows us to impose properties like sparsity or clustering on learned representations, and incorporate human knowledge into the generative model. Whereas changing the prior only indirectly encourages behavior through regularizing the encoder, InteL-VAEs are able to directly enforce desired characteristics. Moreover, they bypass the computation and encoder design issues caused by non-Gaussian priors, while allowing for additional flexibility through training of the parametric mapping function. We show that these advantages, in turn, lead to both better generative models and better representations being learned.

The lottery ticket hypothesis conjectures the existence of sparse subnetworks of large randomly initialized deep neural networks that can be successfully trained in isolation. Recent work has experimentally observed that some of these tickets can be practically reused across a variety of tasks, hinting at some form of universality. We formalize this concept and theoretically prove that not only do such universal tickets exist but they also do not require further training. Our proofs introduce a couple of technical innovations related to pruning for strong lottery tickets, including extensions of subset sum results and a strategy to leverage higher amounts of depth. Our explicit sparse constructions of universal function families might be of independent interest, as they highlight representational benefits induced by univariate convolutional architectures.

A central goal of machine learning is the development of systems that can solve many problems in as many data domains as possible. Current architectures, however, cannot be applied beyond a small set of stereotyped settings, as they bake in domain & task assumptions or scale poorly to large inputs or outputs. In this work, we propose Perceiver IO, a general-purpose architecture that handles data from arbitrary settings while scaling linearly with the size of inputs and outputs. Our model augments the Perceiver with a flexible querying mechanism that enables outputs of various sizes and semantics, doing away with the need for task-specific architecture engineering. The same architecture achieves strong results on tasks spanning natural language and visual understanding, multi-task and multi-modal reasoning, and StarCraft II. As highlights, Perceiver IO outperforms a Transformer-based BERT baseline on the GLUE language benchmark despite removing input tokenization and achieves state-of-the-art performance on Sintel optical flow estimation with no explicit mechanisms for multiscale correspondence.

Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps, compared to models in the literature. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps. We then keep progressively applying this distillation procedure to our model, halving the number of required sampling steps each time. On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with (near) state-of-the-art samplers taking 1024 or 8192 steps, and are able to distill down to models taking as little as 4 steps without losing much perceptual quality; achieving, for example, a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive distillation procedure does not take more time than it takes to train the original model, thus representing an efficient …
Pruning neural networks at initialization would enable us to find sparse models that retain the accuracy of the original network while consuming fewer computational resources for training and inference. However, current methods are insufficient to enable this optimization and lead to a large degradation in model performance. In this paper, we identify a fundamental limitation in the formulation of current methods, namely that their saliency criteria look at a single step at the start of training without taking into account the trainability of the network. While pruning iteratively and gradually has been shown to improve pruning performance, explicit consideration of the training stage that will immediately follow pruning has so far been absent from the computation of the saliency criterion. To overcome the short-sightedness of existing methods, we propose Prospect Pruning (ProsPr), which uses meta-gradients through the first few steps of optimization to determine which weights to prune. ProsPr combines an estimate of the higher-order effects of pruning on the loss and the optimization trajectory to identify the trainable sub-network. Our method achieves state-of-the-art pruning performance on a variety of vision classification tasks, with less data and in a single shot compared to existing pruning-at-initialization methods.



Comparing structured objects such as graphs is a fundamental operationinvolved in many learning tasks. To this end, the Gromov-Wasserstein (GW)distance, based on Optimal Transport (OT), has proven to be successful inhandling the specific nature of the associated objects. More specifically,through the nodes connectivity relations, GW operates on graphs, seen asprobability measures over specific spaces. At the core of OT is the idea ofconservation of mass, which imposes a coupling between all the nodes fromthe two considered graphs. We argue in this paper that this property can bedetrimental for tasks such as graph dictionary or partition learning, and werelax it by proposing a new semi-relaxed Gromov-Wasserstein divergence.Aside from immediate computational benefits, we discuss its properties, andshow that it can lead to an efficient graph dictionary learning algorithm.We empirically demonstrate its relevance for complex tasks on graphs such aspartitioning, clustering and completion.

The exponential growth in numbers of parameters of neural networks over the past years has been accompanied by an increase in performance across several fields. However, due to their sheer size, the networks not only became difficult to interpret but also problematic to train and use in real-world applications, since hardware requirements increased accordingly. Tackling both issues, we present a novel approach that either drops a neural network's initial weights or inverts their respective sign. Put simply, a network is trained by weight selection and inversion without changing their absolute values.Our contribution extends previous work on masking by additionally sign-inverting the initial weights and follows the findings of the Lottery Ticket Hypothesis.Through this extension and adaptations of initialization methods, we achieve a pruning rate of up to 99%, while still matching or exceeding the performance of various baseline and previous models.Our approach has two main advantages.First, and most notable, signed Supermask models drastically simplify a model's structure, while still performing well on given tasks.Second, by reducing the neural network to its very foundation, we gain insights into which weights matter for performance. The code is available on GitHub.

Source-free domain adaptation (SFDA) aims to adapt a model trained on labelled data in a source domain to unlabelled data in a target domain without access to the source-domain data during adaptation. Existing methods for SFDA leverage entropy-minimization techniques which: (i) apply only to classification; (ii) destroy model calibration; and (iii) rely on the source model achieving a good level of feature-space class-separation in the target domain. We address these issues for a particularly pervasive type of domain shift called measurement shift which can be resolved by restoring the source features rather than extracting new ones. In particular, we propose Feature Restoration (FR) wherein we: (i) store a lightweight and flexible approximation of the feature distribution under the source data; and (ii) adapt the feature-extractor such that the approximate feature distribution under the target data realigns with that saved on the source. We additionally propose a bottom-up training scheme which boosts performance, which we call Bottom-Up Feature Restoration (BUFR). On real and synthetic data, we demonstrate that BUFR outperforms existing SFDA methods in terms of accuracy, calibration, and data efficiency, while being less reliant on the performance of the source model in the target domain.
In this paper, we explore the problem of generating molecules using deep neural networks, which has recently gained much interest in chemistry. To this end, we propose a spanning tree-based graph generation (STGG) framework based on formulating molecular graph generation as a construction of a spanning tree and the residual edges. Such a formulation exploits the sparsity of molecular graphs and allows using compact tree-constructive operations to define the molecular graph connectivity. Based on the intermediate graph structure of the construction process, our framework can constrain its generation to molecular graphs that satisfy the chemical valence rules. We also newly design a Transformer architecture with tree-based relative positional encodings for realizing the tree construction procedure. Experiments on QM9, ZINC250k, and MOSES benchmarks verify the effectiveness of the proposed framework in metrics such as validity, Frechet ChemNet distance, and fragment similarity. We also demonstrate the usefulness of STGG in maximizing penalized LogP value of molecules.

Quantization of deep neural networks (DNN) has been proven effective for compressing and accelerating DNN models. Data-free quantization (DFQ) is a promising approach without the original datasets under privacy-sensitive and confidential scenarios. However, current DFQ solutions degrade accuracy, need synthetic data to calibrate networks, and are time-consuming and costly. This paper proposes an on-the-fly DFQ framework with sub-second quantization time, called SQuant, which can quantize networks on inference-only devices with low computation and memory requirements. With the theoretical analysis of the second-order information of DNN task loss, we decompose and approximate the Hessian-based optimization objective into three diagonal sub-items, which have different areas corresponding to three dimensions of weight tensor: element-wise, kernel-wise, and output channel-wise. Then, we progressively compose sub-items and propose a novel data-free optimization objective in the discrete domain, minimizing Constrained Absolute Sum of Error (or CASE in short), which surprisingly does not need any dataset and is even not aware of network architecture. We also design an efficient algorithm without back-propagation to further reduce the computation complexity of the objective solver. Finally, without fine-tuning and synthetic datasets, SQuant accelerates the data-free quantization process to a sub-second level with >30% accuracy improvement over the existing data-free post-training quantization …

We present a method for training neural network models with discrete stochastic variables.The core of the method is \emph{stability regularization}, which is a regularization procedure based on the idea of noise stability developed in Gaussian isoperimetric theory in the analysis of Gaussian functions.Stability regularization is method to make the output of continuous functions of Gaussian random variables close to discrete, that is binary or categorical, without the need for significant manual tuning.The method allows control over the extent to which a Gaussian function's output is close to discrete, thus allowing for continued flow of gradient.The method can be used standalone or in combination with existing continuous relaxation methods.We validate the method in a broad range of experiments using discrete variables including neural relational inference, generative modeling, clustering and conditional computing.


One-shot Neural Architecture Search (NAS) usually constructs an over-parameterized network, which we call a supernet, and typically adopts sharing parameters among the sub-models to improve computational efficiency. One-shot NAS often repeatedly samples sub-models from the supernet and trains them to optimize the shared parameters. However, this training strategy suffers from multi-model forgetting. Training a sampled sub-model overrides the previous knowledge learned by the other sub-models, resulting in an unfair performance evaluation between the sub-models. We propose Supernet with Unbiased Meta-Features for Neural Architecture Search (SUMNAS), a supernet learning strategy based on meta-learning to tackle the knowledge forgetting issue. During the training phase, we explicitly address the multi-model forgetting problem and help the supernet learn unbiased meta-features, independent from the sampled sub-models. Once training is over, sub-models can be instantly compared to get the overall ranking or the best sub-model. Our evaluation on the NAS-Bench-201 and MobileNet-based search space demonstrate that SUMNAS shows improved ranking ability and finds architectures whose performance is on par with existing state-of-the-art NAS algorithms.

Multilingual machine translation aims to develop a single model for multiple language directions. However, existing multilingual models based on Transformer are limited in terms of both translation performance and inference speed. In this paper, we propose switch-GLAT, a non-autoregressive multilingual machine translation model with a code-switch decoder. It can generate contextual code-switched translations for a given source sentence, and perform code-switch back-translation, greatly boosting multilingual translation performance. In addition, its inference is highly efficient thanks to its parallel decoder. Experiments show that our proposed switch-GLAT outperform the multilingual Transformer with as much as 1.16 BLEU improvement and 6.6x faster decoding speed in inference.

Building sample-efficient agents that generalize out-of-distribution (OOD) in real-world settings remains a fundamental unsolved problem on the path towards achieving higher-level cognition. One particularly promising approach is to begin with low-dimensional, pretrained representations of our world, which should facilitate efficient downstream learning and generalization. By training 240 representations and over 10,000 reinforcement learning (RL) policies on a simulated robotic setup, we evaluate to what extent different properties of pretrained VAE-based representations affect the OOD generalization of downstream agents. We observe that many agents are surprisingly robust to realistic distribution shifts, including the challenging sim-to-real case. In addition, we find that the generalization performance of a simple downstream proxy task reliably predicts the generalization performance of our RL agents under a wide range of OOD settings. Such proxy tasks can thus be used to select pretrained representations that will lead to agents that generalize.



We investigate the relationship between commonly considered notions of multiclass calibration and the calibration algorithms used to achieve these notions, leading to two broad contributions. First, we propose a new and arguably natural notion of top-label calibration, which requires the reported probability of the most likely label to be calibrated. Along the way, we highlight certain philosophical issues with the closely related and popular notion of confidence calibration. Second, we outline general 'wrapper' multiclass-to-binary (M2B) algorithms that can be used to achieve confidence, top-label, and class-wise calibration, using underlying binary calibration routines. Our wrappers can also be generalized to other notions of calibration, if required for certain practical applications. We instantiate these wrappers with the binary histogram binning (HB) algorithm, and show that the overall procedure has distribution-free calibration guarantees. In an empirical evaluation, we find that with the right M2B wrapper, HB performs significantly better than other calibration approaches. Code for this work is available at https://github.com/aigen/df-posthoc-calibration.

Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive (in terms the Weisfeiler–Lehman graph isomorphism test) than message-passing GNNs. Augmenting GNNs with TOGL leads to improved predictive performance for graph and node classification tasks, both on synthetic data sets, which can be classified by humans using their topology but not by ordinary GNNs, and on real-world data.

In NLP, a large volume of tasks involve pairwise comparison between two sequences (e.g. sentence similarity and paraphrase identification). Predominantly, two formulations are used for sentence-pair tasks: bi-encoders and cross-encoders. Bi-encoders produce fixed-dimensional sentence representations and are computationally efficient, however, they usually underperform cross-encoders. Cross-encoders can leverage their attention heads to exploit inter-sentence interactions for better performance but they require task fine-tuning and are computationally more expensive. In this paper, we present a completely unsupervised sentence representation model termed as Trans-Encoder that combines the two learning paradigms into an iterative joint framework to simultaneously learn enhanced bi- and cross-encoders. Specifically, on top of a pre-trained Language Model (PLM), we start with converting it to an unsupervised bi-encoder, and then alternate between the bi- and cross-encoder task formulations. In each alternation, one task formulation will produce pseudo-labels which are used as learning signals for the other task formulation. We then propose an extension to conduct such self-distillation approach on multiple PLMs in parallel and use the average of their pseudo-labels for mutual distillation. Trans-Encoder creates, to the best of our knowledge, the first completely unsupervised cross-encoder and also a state-of-the-art unsupervised bi-encoder for sentence similarity. Both the bi-encoder and cross-encoder formulations …

The current methods for learning representations with auto-encoders almost exclusively employ vectors as the latent representations. In this work, we propose to employ a tensor product structure for this purpose. This way, the obtained representations are naturally disentangled. In contrast to the conventional variations methods, which are targeted toward normally distributed features, the latent space in our representation is distributed uniformly over a set of unit circles. We argue that the torus structure of the latent space captures the generative factors effectively. We employ recent tools for measuring unsupervised disentanglement, and in an extensive set of experiments demonstrate the advantage of our method in terms of disentanglement, completeness, and informativeness. The code for our proposed method is available at https://github.com/rotmanmi/Unsupervised-Disentanglement-Torus.

Graph neural networks (GNNs) are widely used in regression and classification problems applied to text, in areas such as sentiment analysis and medical decision-making processes. We propose a novel form for node attributes within a GNN based model that captures node-specific embeddings for every word in the vocabulary. This provides a global representation at each node, coupled with node-level updates according to associations among words in a transcript. We demonstrate the efficacy of the approach by augmenting the accuracy of measuring major depressive disorder (MDD). Prior research has sought to make a diagnostic prediction of depression levels from patient data using several modalities, including audio, video, and text. On the DAIC-WOZ benchmark, our method outperforms state-of-art methods by a substantial margin, including those using multiple modalities. Moreover, we also evaluate the performance of our novel model on a Twitter sentiment dataset. We show that our model outperforms a general GNN model by leveraging our novel 2-D node attributes. The performance of our work demonstrates the generality of the proposed method.

In nature, the process of cellular growth and differentiation has lead to an amazing diversity of organisms --- algae, starfish, giant sequoia, tardigrades, and orcas are all created by the same generative process.Inspired by the incredible diversity of this biological generative process, we propose a generative model, the Variational Neural Cellular Automata (VNCA), which is loosely inspired by the biological processes of cellular growth and differentiation. Unlike previous related works, the VNCA is a proper probabilistic generative model, and we evaluate it according to best practices. We find that the VNCA learns to reconstruct samples well and that despite its relatively few parameters and simple local-only communication, the VNCA can learn to generate a large variety of output from information encoded in a common vector format. While there is a significant gap to the current state-of-the-art in terms of generative modeling performance, we show that the VNCA can learn a purely self-organizing generative process of data. Additionally, the self-organizing nature bestows the VNCA with some inherent robustness against perturbations in the early stages of growth.
Social: Facilitating a smoother transition to Renewable Energy with AI (AI4Renewables) Mon 25 Apr 11:00 a.m.
With rapidly rising carbon emissions globally, it is the need of the hour to transition to clean energy sources – such as wind, solar etc. However, renewable energy sources like wind turbines are complex engineering systems that regularly suffer from operational inconsistencies and failures, leading to downtimes and energy production short of the full potential. AI can help support the operations & maintenance (O&M) of such energy systems, helping predict incipient failures and also suggesting maintenance actions to fix/avert faults. This can help bring down O&M costs as well as reduce downtimes and increase availability of the energy systems.
At present, there is very limited focus on leveraging AI in the renewables domain. This social will aim to emphasise the opportunities (e.g. fault prediction, suggesting O&M activities, power forecasting etc.) and challenges (e.g. data confidentiality in the industry, lack of historical failure data etc.) in applying AI for smoother transition to clean energy, with various avenues such as transfer learning and natural language generation to ensure trustworthy and reliable decision support. The social will focus on a short presentation from the organisers, followed by a panel discussion from invited experts on AI for renewable energy followed by open Q/A on first day, and a fully informal/friendly socialising discussion on second day.
Invited Talk: Been Kim
Beyond interpretability: developing a language to shape our relationships with AI
AI arrived in our lives, making important decisions affecting us. How should we work with this new class of co-workers? The goal of Interpretability is to engineer our relationships with AI, in part by making tools to produce explanations from AI models. But I argue that we also need to study AI machines as scientific objects, in isolation and with humans. Doing so not only provides principles for tools we make, but also is necessary to take our working relationship with AI to the next level. Our ultimate goal is a language that will enable us to learn from and be inspired by AI. This language will not be perfect– no language is–but it will be useful. As human language is known to shape our thinking, this will also shape us and future AI.
Bio :
Poster Session 2 Mon 25 Apr 05:30 p.m.
[ Virtual ]

The generalization capacity of various machine learning models exhibits different phenomena in the under- and over-parameterized regimes. In this paper, we focus on regression models such as feature regression and kernel regression and analyze a generalized weighted least-squares optimization method for computational learning and inversion with noisy data. The highlight of the proposed framework is that we allow weighting in both the parameter space and the data space. The weighting scheme encodes both a priori knowledge on the object to be learned and a strategy to weight the contribution of different data points in the loss function. Here, we characterize the impact of the weighting scheme on the generalization error of the learning method, where we derive explicit generalization errors for the random Fourier feature model in both the under- and over-parameterized regimes. For more general feature maps, error bounds are provided based on the singular values of the feature matrix. We demonstrate that appropriate weighting from prior knowledge can improve the generalization capability of the learned model.
[ Virtual ]

One of the most important properties of neural networks is the clustering of local minima of the loss function near the global minimum, enabling efficient training. Though generative models implemented on quantum computers are known to be more expressive than their traditional counterparts, it has empirically been observed that these models experience a transition in the quality of their local minima. Namely, below some critical number of parameters, all local minima are far from the global minimum in function value; above this critical parameter count, all local minima are good approximators of the global minimum. Furthermore, for a certain class of quantum generative models, this transition has empirically been observed to occur at parameter counts exponentially large in the problem size, meaning practical training of these models is out of reach. Here, we give the first proof of this transition in trainability, specializing to this latter class of quantum generative model. We use techniques inspired by those used to study the loss landscapes of classical neural networks. We also verify that our analytic results hold experimentally even at modest model sizes.
[ Virtual ]

Explaining deep learning model inferences is a promising venue for scientific understanding, improving safety, uncovering hidden biases, evaluating fairness, and beyond, as argued by many scholars. One of the principal benefits of counterfactual explanations is allowing users to explore "what-if" scenarios through what does not and cannot exist in the data, a quality that many other forms of explanation such as heatmaps and influence functions are inherently incapable of doing. However, most previous work on generative explainability cannot disentangle important concepts effectively, produces unrealistic examples, or fails to retain relevant information. We propose a novel approach, DISSECT, that jointly trains a generator, a discriminator, and a concept disentangler to overcome such challenges using little supervision. DISSECT generates Concept Traversals (CTs), defined as a sequence of generated examples with increasing degrees of concepts that influence a classifier's decision. By training a generative model from a classifier's signal, DISSECT offers a way to discover a classifier's inherent "notion" of distinct concepts automatically rather than rely on user-predefined concepts. We show that DISSECT produces CTs that (1) disentangle several concepts, (2) are influential to a classifier's decision and are coupled to its reasoning due to joint training (3), are realistic, (4) preserve relevant …
[ Virtual ]

This paper investigates two techniques for developing efficient self-supervised vision transformers (EsViT) for visual representation learning. First, we show through a comprehensive empirical study that multi-stage architectures with sparse self-attentions can significantly reduce modeling complexity but with a cost of losing the ability to capture fine-grained correspondences between image regions. Second, we propose a new pre-training task, non-contrastive region-matching, which allows the model to capture fine-grained region dependencies and as a result significantly improves the quality of the learned vision representations. Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation, outperforming prior arts with around an order magnitude of higher throughput. When transferring to downstream linear classification tasks, EsViT outperforms its supervised counterpart on 17 out of 18 datasets. The code and pre-trained models are released at: https://github.com/microsoft/esvit
[ Virtual ]

The empirical success of deep learning is often attributed to SGD’s mysterious ability to avoid sharp local minima in the loss landscape, as sharp minima are known to lead to poor generalization. Recently, empirical evidence of heavy-tailed gradient noise was reported in many deep learning tasks; and it was shown in (Simsekli et al., 2019a;b) that SGD can escape sharp local minima under the presence of such heavy-tailed gradient noise, providing a partial solution to the mystery. In this work, we analyze a popular variant of SGD where gradients are truncated above a fixed threshold. We show that it achieves a stronger notion of avoiding sharp minima: it can effectively eliminate sharp local minima entirely from its training trajectory. We characterize the dynamics of truncated SGD driven by heavy-tailed noises. First, we show that the truncation threshold and width of the attraction field dictate the order of the first exit time from the associated local minimum. Moreover, when the objective function satisfies appropriate structural conditions, we prove that as the learning rate decreases, the dynamics of the heavy-tailed truncated SGD closely resemble those of a continuous-time Markov chain that never visits any sharp minima. Real data experiments on deep learning …
[ Virtual ]

While large pre-trained models have enabled impressive results on a variety of downstream tasks, the largest existing models still make errors, and even accurate predictions may become outdated over time. Because detecting all such failures at training time is impossible, enabling both developers and end users of such models to correct inaccurate outputs while leaving the model otherwise intact is desirable. However, the distributed, black-box nature of the representations learned by large neural networks makes producing such targeted edits difficult. If presented with only a single problematic input and new desired output, fine-tuning approaches tend to overfit; other editing algorithms are either computationally infeasible or simply ineffective when applied to very large models. To enable easy post-hoc editing at scale, we propose Model Editor Networks using Gradient Decomposition (MEND), a collection of small auxiliary editing networks that use a single desired input-output pair to make fast, local edits to a pre-trained model's behavior. MEND learns to transform the gradient obtained by standard fine-tuning, using a low-rank decomposition of the gradient to make the parameterization of this transformation tractable. MEND can be trained on a single GPU in less than a day even for 10 billion+ parameter models; once trained MEND …
[ Virtual ]

Though recent works have developed methods that can generate estimates (or imputations) of the missing entries in a dataset to facilitate downstream analysis, most depend on assumptions that may not align with real-world applications and could suffer from poor performance in subsequent tasks such as classification. This is particularly true if the data have large missingness rates or a small sample size. More importantly, the imputation error could be propagated into the prediction step that follows, which may constrain the capabilities of the prediction model. In this work, we introduce the gradient importance learning (GIL) method to train multilayer perceptrons (MLPs) and long short-term memories (LSTMs) to directly perform inference from inputs containing missing values without imputation. Specifically, we employ reinforcement learning (RL) to adjust the gradients used to train these models via back-propagation. This allows the model to exploit the underlying information behind missingness patterns. We test the approach on real-world time-series (i.e., MIMIC-III), tabular data obtained from an eye clinic, and a standard dataset (i.e., MNIST), where our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
[ Virtual ]

[ Virtual ]
Modeling complex phenomena typically involves the use of both discrete and continuous variables. Such a setting applies across a wide range of problems, from identifying trends in time-series data to performing effective compositional scene understanding in images. Here, we propose Hybrid Memoised Wake-Sleep (HMWS), an algorithm for effective inference in such hybrid discrete-continuous models. Prior approaches to learning suffer as they need to perform repeated expensive inner-loop discrete inference. We build on a recent approach, Memoised Wake-Sleep (MWS), which alleviates part of the problem by memoising discrete variables, and extend it to allow for a principled and effective way to handle continuous variables by learning a separate recognition model used for importance-sampling based approximate inference and marginalization. We evaluate HMWS in the GP-kernel learning and 3D scene understanding domains, and show that it outperforms current state-of-the-art inference methods.
[ Virtual ]

[ Virtual ]

We propose a reinforcement learning based approach to query object localization, for which an agent is trained to localize objects of interest specified by a small exemplary set. We learn a transferable reward signal formulated using the exemplary set by ordinal metric learning. Our proposed method enables test-time policy adaptation to new environments where the reward signals are not readily available, and outperforms fine-tuning approaches that are limited to annotated images. In addition, the transferable reward allows repurposing the trained agent from one specific class to another class. Experiments on corrupted MNIST, CU-Birds, and COCO datasets demonstrate the effectiveness of our approach.
[ Virtual ]

[ Virtual ]

We aim at advancing open-vocabulary object detection, which detects objects described by arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly to further scale up the number of classes contained in existing object detection datasets. To overcome this challenge, we propose ViLD, a training method via Vision and Language knowledge Distillation. Our method distills the knowledge from a pretrained open-vocabulary image classification model (teacher) into a two-stage detector (student). Specifically, we use the teacher model to encode category texts and image regions of object proposals. Then we train a student detector, whose region embeddings of detected boxes are aligned with the text and image embeddings inferred by the teacher. We benchmark on LVIS by holding out all rare categories as novel categories that are not seen during training. ViLD obtains 16.1 mask APr with a ResNet-50 backbone, even outperforming the supervised counterpart by 3.8. When trained with a stronger teacher model ALIGN, ViLD achieves 26.3 APr. The model can directly transfer to other datasets without finetuning, achieving 72.2 AP50 on PASCAL VOC, 36.6 AP on COCO and 11.8 AP on Objects365. On COCO, ViLD outperforms the previous state-of-the-art (Zareian et al., 2021) by 4.8 …
[ Virtual ]

An important challenge facing modern machine learning is how to rigorously quantify the uncertainty of model predictions. Conveying uncertainty is especially important when there are changes to the underlying data distribution that might invalidate the predictive model. Yet, most existing uncertainty quantification algorithms break down in the presence of such shifts. We propose a novel approach that addresses this challenge by constructing \emph{probably approximately correct (PAC)} prediction sets in the presence of covariate shift. Our approach focuses on the setting where there is a covariate shift from the source distribution (where we have labeled training examples) to the target distribution (for which we want to quantify uncertainty). Our algorithm assumes given importance weights that encode how the probabilities of the training examples change under the covariate shift. In practice, importance weights typically need to be estimated; thus, we extend our algorithm to the setting where we are given confidence intervals for the importance weights. We demonstrate the effectiveness of our approach on covariate shifts based on DomainNet and ImageNet. Our algorithm satisfies the PAC constraint, and gives prediction sets with the smallest average normalized size among approaches that always satisfy the PAC constraint.
[ Virtual ]

We propose an asymmetric affinity score for representing the complexity of utilizing the knowledge of one task for learning another one. Our method is based on the maximum bipartite matching algorithm and utilizes the Fisher Information matrix. We provide theoretical analyses demonstrating that the proposed score is mathematically well-defined, and subsequently use the affinity score to propose a novel algorithm for the few-shot learning problem. In particular, using this score, we find relevant training data labels to the test data and leverage the discovered relevant data for episodically fine-tuning a few-shot model. Results on various few-shot benchmark datasets demonstrate the efficacy of the proposed approach by improving the classification accuracy over the state-of-the-art methods even when using smaller models.
[ Virtual ]

[ Virtual ]

A fundamental question in adversarial machine learning is whether a robust classifier exists for a given task. A line of research has made some progress towards this goal by studying the concentration of measure, but we argue standard concentration fails to fully characterize the intrinsic robustness of a classification problem since it ignores data labels which are essential to any classification task. Building on a novel definition of label uncertainty, we empirically demonstrate that error regions induced by state-of-the-art models tend to have much higher label uncertainty than randomly-selected subsets. This observation motivates us to adapt a concentration estimation algorithm to account for label uncertainty, resulting in more accurate intrinsic robustness measures for benchmark image classification problems.



We study the problem of aligning the supports of distributions. Compared to the existing work on distribution alignment, support alignment does not require the densities to be matched. We propose symmetric support difference as a divergence measure to quantify the mismatch between supports. We show that select discriminators (e.g. discriminator trained for Jensen-Shannon divergence) are able to map support differences as support differences in their one-dimensional output space. Following this result, our method aligns supports by minimizing a symmetrized relaxed optimal transport cost in the discriminator 1D space via an adversarial process. Furthermore, we show that our approach can be viewed as a limit of existing notions of alignment by increasing transportation assignment tolerance. We quantitatively evaluate the method across domain adaptation tasks with shifts in label distributions. Our experiments show that the proposed method is more robust against these shifts than other alignment-based baselines.

Deep neural networks (DNNs) are proved to be vulnerable against backdoor attacks. A backdoor could be embedded in the target DNNs through injecting a backdoor trigger into the training examples, which can cause the target DNNs misclassify an input attached with the backdoor trigger. Recent backdoor detection methods often require the access to the original poisoned training data, the parameters of the target DNNs, or the predictive confidence for each given input, which are impractical in many real-world applications, e.g., on-device de-ployed DNNs. We address the black-box hard-label backdoor detection problem where the DNN is a fully black-box and only its final output label is accessible. We approach this problem from the optimization perspective and show that the objective of backdoor detection is bounded by an adversarial objective. Further theoretical and empirical studies reveal that this adversarial objective leads to a solution with highly skewed distribution; a singularity is often observed in the adversarial map of a backdoor-infected example, which we call the adversarial singularity phenomenon. Based on this observation, we propose the adversarial extreme value analysis(AEVA) algorithm to detect backdoors in black-box neural networks. The AEVA algorithm is based on an extreme value analysis on the adversarial map, computed …


In contrast to standard statistical wisdom, modern learning algorithms typically find their best performance in the overparameterized regime in which the model has many more parameters than needed to fit the training data. A growing number of recent works have shown that random feature models can offer a detailed theoretical explanation for this unexpected behavior, but typically these analyses have utilized isotropic distributional assumptions on the underlying data generation process, thereby failing to provide a realistic characterization of real-world models that are designed to identify and harness the structure in natural data. In this work, we examine the high-dimensional asymptotics of random feature regression in the presence of structured data, allowing for arbitrary input correlations and arbitrary alignment between the data and the weights of the target function. We define a partial order on the space of weight-data alignments and prove that generalization performance improves in response to stronger alignment. We also clarify several previous observations in the literature by distinguishing the behavior of the sample-wise and parameter-wise learning curves, finding that sample-wise multiple descent can occur at scales dictated by the eigenstructure of the data covariance, but that parameter-wise multiple descent is limited to double descent, although strong anisotropy …

Vision Transformer (ViT) has recently demonstrated promise in computer vision problems. However, unlike Convolutional Neural Networks (CNN), it is known that the performance of ViT saturates quickly with depth increasing, due to the observed attention collapse or patch uniformity. Despite a couple of empirical solutions, a rigorous framework studying on this scalability issue remains elusive. In this paper, we first establish a rigorous theory framework to analyze ViT features from the Fourier spectrum domain. We show that the self-attention mechanism inherently amounts to a low-pass filter, which indicates when ViT scales up its depth, excessive low-pass filtering will cause feature maps to only preserve their Direct-Current (DC) component. We then propose two straightforward yet effective techniques to mitigate the undesirable low-pass limitation. The first technique, termed AttnScale, decomposes a self-attention block into low-pass and high-pass components, then rescales and combines these two filters to produce an all-pass self-attention matrix. The second technique, termed FeatScale, re-weights feature maps on separate frequency bands to amplify the high-frequency signals. Both techniques are efficient and hyperparameter-free, while effectively overcoming relevant ViT training artifacts such as attention collapse and patch uniformity. By seamlessly plugging in our techniques to multiple ViT variants, we demonstrate that they …

This paper studies the cooperative learning of two generative flow models, in which the two models are iteratively updated based on the jointly synthesized examples. The first flow model is a normalizing flow that transforms an initial simple density into a target density by applying a sequence of invertible transformations. The second flow model is a Langevin flow that runs finite steps of gradient-based MCMC toward an energy-based model. We start from proposing a generative framework that trains an energy-based model with a normalizing flow as an amortized sampler to initialize the MCMC chains of the energy-based model. In each learning iteration, we generate synthesized examples by using a normalizing flow initialization followed by a short-run Langevin flow revision toward the current energy-based model. Then we treat the synthesized examples as fair samples from the energy-based model and update the model parameters with the maximum likelihood learning gradient, while the normalizing flow directly learns from the synthesized examples by maximizing the tractable likelihood. Under the short-run non-mixing MCMC scenario, the estimation of the energy-based model is shown to follow the perturbation of maximum likelihood, and the short-run Langevin flow and the normalizing flow form a two-flow generator that we call …

Lightweight speech recognition models have seen explosive demands owing to a growing amount of speech-interactive features on mobile devices. Since designing such systems from scratch is non-trivial, practitioners typically choose to compress large (pre-trained) speech models. Recently, lottery ticket hypothesis reveals the existence of highly sparse subnetworks that can be trained in isolation without sacrificing the performance of the full models. In this paper, we investigate the tantalizing possibility of using lottery ticket hypothesis to discover lightweight speech recognition models, that are (1) robust to various noise existing in speech; (2) transferable to fit the open-world personalization; and 3) compatible with structured sparsity. We conducted extensive experiments on CNN-LSTM, RNN-Transducer, and Transformer models, and verified the existence of highly sparse winning tickets that can match the full model performance across those backbones. We obtained winning tickets that have less than 20% of full model weights on all backbones, while the most lightweight one only keeps 4.4% weights. Those winning tickets generalize to structured sparsity with no performance loss, and transfer exceptionally from large source datasets to various target datasets. Perhaps most surprisingly, when the training utterances have high background noises, the winning tickets even substantially outperform the full models, showing …

Knowledge transfer between heterogeneous source and target networks and tasks has received a lot of attention in recent times as large amounts of quality labeled data can be difficult to obtain in many applications. Existing approaches typically constrain the target deep neural network (DNN) feature representations to be close to the source DNNs feature representations, which can be limiting. We, in this paper, propose a novel adversarial multi-armed bandit approach that automatically learns to route source representations to appropriate target representations following which they are combined in meaningful ways to produce accurate target models. We see upwards of 5\% accuracy improvements compared with the state-of-the-art knowledge transfer methods on four benchmark (target) image datasets CUB200, Stanford Dogs, MIT67, and Stanford40 where the source dataset is ImageNet. We qualitatively analyze the goodness of our transfer scheme by showing individual examples of the important features focused on by our target network at different layers compared with the (closest) competitors. We also observe that our improvement over other methods is higher for smaller target datasets making it an effective tool for small data applications that may benefit from transfer learning.

As increasingly complex AI systems are introduced into our daily lives, it becomes important for such systems to be capable of explaining the rationale for their decisions and allowing users to contest these decisions. A significant hurdle to allowing for such explanatory dialogue could be the {\em vocabulary mismatch} between the user and the AI system. This paper introduces methods for providing contrastive explanations in terms of user-specified concepts for sequential decision-making settings where the system's model of the task may be best represented as an inscrutable model. We do this by building partial symbolic models of a local approximation of the task that can be leveraged to answer the user queries. We test these methods on a popular Atari game (Montezuma's Revenge) and variants of Sokoban (a well-known planning benchmark) and report the results of user studies to evaluate whether people find explanations generated in this form useful.

Molecule representation learning (MRL) methods aim to embed molecules into a real vector space. However, existing SMILES-based (Simplified Molecular-Input Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods either take SMILES strings as input that have difficulty in encoding molecule structure information, or over-emphasize the importance of GNN architectures but neglect their generalization ability. Here we propose using chemical reactions to assist learning molecule representation. The key idea of our approach is to preserve the equivalence of molecules with respect to chemical reactions in the embedding space, i.e., forcing the sum of reactant embeddings and the sum of product embeddings to be equal for each chemical equation. This constraint is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings. Moreover, our model can use any GNN as the molecule encoder and is thus agnostic to GNN architectures. Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks, e.g., reaction product prediction, molecule property prediction, reaction classification, and graph-edit-distance prediction. The code is available at https://github.com/hwwang55/MolR.

Conditional waveform synthesis models learn a distribution of audio waveforms given conditioning such as text, mel-spectrograms, or MIDI. These systems employ deep generative models that model the waveform via either sequential (autoregressive) or parallel (non-autoregressive) sampling. Generative adversarial networks (GANs) have become a common choice for non-autoregressive waveform synthesis. However, state-of-the-art GAN-based models produce artifacts when performing mel-spectrogram inversion. In this paper, we demonstrate that these artifacts correspond with an inability for the generator to learn accurate pitch and periodicity. We show that simple pitch and periodicity conditioning is insufficient for reducing this error relative to using autoregression. We discuss the inductive bias that autoregression provides for learning the relationship between instantaneous frequency and phase, and show that this inductive bias holds even when autoregressively sampling large chunks of the waveform during each forward pass. Relative to prior state-of-the-art GAN-based models, our proposed model, Chunked Autoregressive GAN (CARGAN) reduces pitch error by 40-60%, reduces training time by 58%, maintains a fast inference speed suitable for real-time or interactive applications, and maintains or improves subjective quality.

Humans use natural language to compose common concepts from their environment into plausible, day-to-day scene descriptions. However, such generative commonsense reasoning (GCSR) skills are lacking in state-of-the-art text generation methods. Descriptive sentences about arbitrary concepts generated by neural text generation models (e.g., pre-trained text-to-text Transformers) are often grammatically fluent but may not correspond to human common sense, largely due to their lack of mechanisms to capture concept relations, to identify implicit concepts, and to perform generalizable reasoning about unseen concept compositions. In this paper, we propose an Imagine-and-Verbalize (I\&V) method, which learns to imagine a relational scene knowledge graph (SKG) with relations between the input concepts, and leverage the SKG as a constraint when generating a plausible scene description. We collect and harmonize a set of knowledge resources from different domains and modalities, providing a rich auxiliary supervision signal for I\&V. The experiments demonstrate the effectiveness of I\&V in improving language models on both concept-to-sentence and concept-to-story generation tasks, while enabling the model to learn well from fewer task examples and generate SKGs that make common sense to human annotators.
Continual learning has been widely studied in recent years to resolve the catastrophic forgetting of deep neural networks. In this paper, we first enforce a low-rank filter subspace by decomposing convolutional filters within each network layer over a small set of filter atoms. Then, we perform continual learning with filter atom swapping. In other words, we learn for each task a new filter subspace for each convolutional layer, i.e., hundreds of parameters as filter atoms, but keep subspace coefficients shared across tasks. By maintaining a small footprint memory of filter atoms, we can easily archive models for past tasks to avoid forgetting. The effectiveness of this simple scheme for continual learning is illustrated both empirically and theoretically. The proposed atom swapping framework further enables flexible and efficient model ensemble with members selected within a task or across tasks to improve the performance in different continual learning settings. Being validated on multiple benchmark datasets with different convolutional network structures, the proposed method outperforms the state-of-the-art methods in both accuracy and scalability.

Drawing inspiration from gradient-based meta-learning methods with infinitely small gradient steps, we introduce Continuous-Time Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field. Specifically, representations of the inputs are meta-learned such that a task-specific linear classifier is obtained as a solution of an ordinary differential equation (ODE). Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous, as opposed to a fixed and discrete number of gradient steps. As a consequence, we can optimize the amount of adaptation necessary to solve a new task using stochastic gradient descent, in addition to learning the initial conditions as is standard practice in gradient-based meta-learning. Importantly, in order to compute the exact meta-gradients required for the outer-loop updates, we devise an efficient algorithm based on forward mode differentiation, whose memory requirements do not scale with the length of the learning trajectory, thus allowing longer adaptation in constant memory. We provide analytical guarantees for the stability of COMLN, we show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.

We propose to identify directions invariant to a given classifier so that these directions can be controlled in tasks such as style transfer. While orthogonal decomposition is directly identifiable when the given classifier is linear, we formally define a notion of orthogonality in the non-linear case. We also provide a surprisingly simple method for constructing the orthogonal classifier (a classifier utilizing directions other than those of the given classifier). Empirically, we present three use cases where controlling orthogonal variation is important: style transfer, domain adaptation, and fairness. The orthogonal classifier enables desired style transfer when domains vary in multiple aspects, improves domain adaptation with label shifts and mitigates the unfairness as a predictor. The code is available at https://github.com/Newbeeer/orthogonal_classifier

Deep learning has seen a movement away from representing examples with a monolithic hidden state towards a richly structured state. For example, Transformers segment by position, and object-centric architectures decompose images into entities. In all these architectures, interactions between different elements are modeled via pairwise interactions: Transformers make use of self-attention to incorporate information from other positions and object-centric architectures make use of graph neural networks to model interactions among entities. We consider how to improve on pairwise interactions in terms of global coordination and a coherent, integrated representation that can be used for downstream tasks. In cognitive science, a global workspace architecture has been proposed in which functionally specialized components share information through a common, bandwidth-limited communication channel. We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments. The proposed method includes a shared workspace through which communication among different specialist modules takes place but due to limits on the communication bandwidth, specialist modules must compete for access. We show that capacity limitations have a rational basis in that (1) they encourage specialization and compositionality and (2) they facilitate the synchronization of otherwise independent specialists.

As reinforcement learning (RL) has achieved near human-level performance in a variety of tasks, its robustness has raised great attention. While a vast body of research has explored test-time (evasion) attacks in RL and corresponding defenses, its robustness against training-time (poisoning) attacks remains largely unanswered. In this work, we focus on certifying the robustness of offline RL in the presence of poisoning attacks, where a subset of training trajectories could be arbitrarily manipulated. We propose the first certification framework, COPA, to certify the number of poisoning trajectories that can be tolerated regarding different certification criteria. Given the complex structure of RL, we propose two certification criteria: per-state action stability and cumulative reward bound. To further improve the certification, we propose new partition and aggregation protocols to train robust policies. We further prove that some of the proposed certification methods are theoretically tight and some are NP-Complete problems. We leverage COPA to certify three RL environments trained with different algorithms and conclude: (1) The proposed robust aggregation protocols such as temporal aggregation can significantly improve the certifications; (2) Our certifications for both per-state action stability and cumulative reward bound are efficient and tight; (3) The certification for different training algorithms and …

As reinforcement learning (RL) has achieved great success and been even adopted in safety-critical domains such as autonomous vehicles, a range of empirical studies have been conducted to improve its robustness against adversarial attacks. However, how to certify its robustness with theoretical guarantees still remains challenging. In this paper, we present the first unified framework CROP (Certifying Robust Policies for RL) to provide robustness certification on both action and reward levels. In particular, we propose two robustness certification criteria: robustness of per-state actions and lower bound of cumulative rewards. We then develop a local smoothing algorithm for policies derived from Q-functions to guarantee the robustness of actions taken along the trajectory; we also develop a global smoothing algorithm for certifying the lower bound of a finite-horizon cumulative reward, as well as a novel local smoothing algorithm to perform adaptive search in order to obtain tighter reward certification. Empirically, we apply CROP to evaluate several existing empirically robust RL algorithms, including adversarial training and different robust regularization, in four environments (two representative Atari games, Highway, and CartPole). Furthermore, by evaluating these algorithms against adversarial attacks, we demonstrate that our certifications are often tight. All experiment results are available at website https://crop-leaderboard.github.io.

While recent automated data augmentation methods lead to state-of-the-art results, their design spaces and the derived data augmentation strategies still incorporate strong human priors. In this work, instead of fixing a set of hand-picked default augmentations alongside the searched data augmentations, we propose a fully automated approach for data augmentation search named Deep AutoAugment (DeepAA). DeepAA progressively builds a multi-layer data augmentation pipeline from scratch by stacking augmentation layers one at a time until reaching convergence. For each augmentation layer, the policy is optimized to maximize the cosine similarity between the gradients of the original and augmented data along the direction with low variance. Our experiments show that even without default augmentations, we can learn an augmentation policy that achieves strong performance with that of previous works. Extensive ablation studies show that the regularized gradient matching is an effective search method for data augmentation policies. Our code is available at: https://github.com/MSU-MLSys-Lab/DeepAA .

Graph Neural Networks (GNNs) are gaining extensive attention for their application in graph data. However, the black-box nature of GNNs prevents users from understanding and trusting the models, thus hampering their applicability. Whereas explaining GNNs remains a challenge, most existing methods fall into approximation based and perturbation based approaches with suffer from faithfulness problems and unnatural artifacts respectively. To tackle these problems, we propose DEGREE (Decomposition based Explanation for GRaph nEural nEtworks) to provide a faithful explanation for GNN predictions. By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction. Based on this, we further design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods. The efficiency of our algorithm can be further improved by utilizing GNN characteristics. Finally, we conduct quantitative and qualitative experiments on synthetic and real-world datasets to demonstrate the effectiveness of DEGREE on node classification and graph classification tasks.


Distributional Reinforcement Learning (RL) differs from traditional RL by estimating the distribution over returns to capture the intrinsic uncertainty of MDPs. One key challenge in distributional RL lies in how to parameterize the quantile function when minimizing the Wasserstein metric of temporal differences. Existing algorithms use step functions or piecewise linear functions. In this paper, we propose to learn smooth continuous quantile functions represented by monotonic rational-quadratic splines, which also naturally solve the quantile crossing problem. Experiments in stochastic environments show that a dense estimation for quantile functions enhances distributional RL in terms of faster empirical convergence and higher rewards in most cases.

Catastrophic forgetting presents a challenge in developing deep learning models capable of continual learning, i.e. learning tasks sequentially. Recently, both computer vision and natural-language processing have witnessed great progress through the use of large-scale pretrained models. In this work, we present an empirical study of catastrophic forgetting in this pretraining paradigm.Our experiments indicate that large, pretrained ResNets and Transformers are significantly more resistant to forgetting than randomly-initialized, trained-from-scratch models; this robustness systematically improves with scale of both model and pretraining dataset size.We take initial steps towards characterizing what aspect of model representations allows them to perform continual learning so well, finding that in the pretrained models, distinct class representations grow more orthogonal with scale. Our results suggest that, when possible, scale and a diverse pretraining dataset can be useful ingredients in mitigating catastrophic forgetting.

We build on the recently proposed EigenGame that views eigendecomposition as a competitive game. EigenGame's updates are biased if computed using minibatches of data, which hinders convergence and more sophisticated parallelism in the stochastic setting. In this work, we propose an unbiased stochastic update that is asymptotically equivalent to EigenGame, enjoys greater parallelism allowing computation on datasets of larger sample sizes, and outperforms EigenGame in experiments. We present applications to finding the principal components of massive datasets and performing spectral clustering of graphs. We analyze and discuss our proposed update in the context of EigenGame and the shift in perspective from optimization to games.

We introduce environment predictive coding, a self-supervised approach to learn environment-level representations for embodied agents. In contrast to prior work on self-supervised learning for individual images, we aim to encode a 3D environment using a series of images observed by an agent moving in it. We learn these representations via a masked-zone prediction task, which segments an agent’s trajectory into zones and then predicts features of randomly masked zones, conditioned on the agent’s camera poses. This explicit spatial conditioning encourages learning representations that capture the geometric and semantic regularities of 3D environments. We learn such representations on a collection of video walkthroughs and demonstrate successful transfer to multiple downstream navigation tasks. Our experiments on the real-world scanned 3D environments of Gibson and Matterport3D show that our method obtains 2 - 6× higher sample-efficiency and up to 57% higher performance over standard image-representation learning.

This paper introduces a new extragradient-type algorithm for a class of nonconvex-nonconcave minimax problems. It is well-known that finding a local solution for general minimax problems is computationally intractable. This observation has recently motivated the study of structures sufficient for convergence of first order methods in the more general setting of variational inequalities when the so-called weak Minty variational inequality (MVI) holds. This problem class captures non-trivial structures as we demonstrate with examples, for which a large family of existing algorithms provably converge to limit cycles. Our results require a less restrictive parameter range in the weak MVI compared to what is previously known, thus extending the applicability of our scheme. The proposed algorithm is applicable to constrained and regularized problems, and involves an adaptive stepsize allowing for potentially larger stepsizes. Our scheme also converges globally even in settings where the underlying operator exhibits limit cycles.


Recent developments in large-scale machine learning suggest that by scaling up data, model size and training time properly, one might observe that improvements in pre-training would transfer favorably to most downstream tasks. In this work we systematically study this phenomena and establish that, as we increase the upstream accuracy, performance of downstream tasks \emph{saturates}. In particular, we investigate more than 4800 experiments on Vision Transformers, MLP-Mixers and ResNets with number of parameters ranging from ten million to ten billion, trained on the largest scale of available image data (JFT, ImageNet21K) and evaluated on more than 20 downstream image recognition tasks. We propose a model for downstream performance that reflects the saturation phenomena and captures the nonlinear relationship in performance of upstream and downstream tasks. Delving deeper to understand the reasons that give rise to these phenomena, we show that the observed saturation behavior is closely related to the way that representations evolve through the layers of the models. We showcase an even more extreme scenario where performance on upstream and downstream are at odds with each other. That is, in order to have a better downstream performance, we need to hurt upstream accuracy.

Despite being widely used, face recognition models suffer from bias: the probability of a false positive (incorrect face match) strongly depends on sensitive attributes such as the ethnicity of the face. As a result, these models can disproportionately and negatively impact minority groups, particularly when used by law enforcement. The majority of bias reduction methods have several drawbacks: they use an end-to-end retraining approach, may not be feasible due to privacy issues, and often reduce accuracy. An alternative approach is post-processing methods that build fairer decision classifiers using the features of pre-trained models, thus avoiding the cost of retraining. However, they still have drawbacks: they reduce accuracy (AGENDA, FTC), or require retuning for different false positive rates (FSN). In this work, we introduce the Fairness Calibration (FairCal) method, a post-training approach that simultaneously: (i) increases model accuracy (improving the state-of-the-art), (ii) produces fairly-calibrated probabilities, (iii) significantly reduces the gap in the false positive rates, (iv) does not require knowledge of the sensitive attribute, and (v) does not require retraining, training an additional model or retuning. We apply it to the task of Face Verification, and obtain state-of-the-art results with all the above advantages.

Fair representation learning is an attractive approach that promises fairness of downstream predictors by encoding sensitive data. Unfortunately, recent work has shown that strong adversarial predictors can still exhibit unfairness by recovering sensitive attributes from these representations. In this work, we present Fair Normalizing Flows (FNF), a new approach offering more rigorous fairness guarantees for learned representations. Specifically, we consider a practical setting where we can estimate the probability density for sensitive groups. The key idea is to model the encoder as a normalizing flow trained to minimize the statistical distance between the latent representations of different groups. The main advantage of FNF is that its exact likelihood computation allows us to obtain guarantees on the maximum unfairness of any potentially adversarial downstream predictor. We experimentally demonstrate the effectiveness of FNF in enforcing various group fairness notions, as well as other attractive properties such as interpretability and transfer learning, on a variety of challenging real-world datasets.

Adversarial Propagation (AdvProp) is an effective way to improve recognition models, leveraging adversarial examples. Nonetheless, AdvProp suffers from the extremely slow training speed, mainly because: a) extra forward and backward passes are required for generating adversarial examples; b) both original samples and their adversarial counterparts are used for training (i.e., 2X data). In this paper, we introduce Fast AdvProp, which aggressively revamps AdvProp's costly training components, rendering the method nearly as cheap as the vanilla training. Specifically, our modifications in Fast AdvProp are guided by the hypothesis that disentangled learning with adversarial examples is the key for performance improvements, while other training recipes (e.g., paired clean and adversarial training samples, multi-step adversarial attackers) could be largely simplified. Our empirical results show that, compared to the vanilla training baseline, Fast AdvProp is able to further model performance on a spectrum of visual benchmarks, without incurring extra training cost. Additionally, our ablations find Fast AdvProp scales better if larger models are used, is compatible with existing data augmentation methods (i.e., Mixup and CutMix), and can be easily adapted to other recognition tasks like object detection. The code is available here: https://github.com/meijieru/fast_advprop.

The topological patterns exhibited by many real-world networks motivate the development of topology-based methods for assessing the similarity of networks. However, extracting topological structure is difficult, especially for large and dense networks whose node degrees range over multiple orders of magnitude. In this paper, we propose a novel and computationally practical topological clustering method that clusters complex networks with intricate topology using principled theory from persistent homology and optimal transport. Such networks are aggregated into clusters through a centroid-based clustering strategy based on both their topological and geometric structure, preserving correspondence between nodes in different networks. The notions of topological proximity and centroid are characterized using a novel and efficient approach to computation of the Wasserstein distance and barycenter for persistence barcodes associated with connected components and cycles. The proposed method is demonstrated to be effective using both simulated networks and measured functional brain networks.

Message Passing Neural Networks (MPNNs) are a common type of Graph Neural Network (GNN), in which each node’s representation is computed recursively by aggregating representations (“messages”) from its immediate neighbors akin to a star-shaped pattern. MPNNs are appealing for being efficient and scalable, however their expressiveness is upper-bounded by the 1st-order Weisfeiler-Lehman isomorphism test (1-WL). In response, prior works propose highly expressive models at the cost of scalability and sometimes generalization performance. Our work stands between these two regimes: we introduce a general framework to uplift any MPNN to be more expressive, with limited scalability overhead and greatly improved practical performance. We achieve this by extending local aggregation in MPNNs from star patterns to general subgraph patterns (e.g., k-egonets): in our framework, each node representation is computed as the encoding of a surrounding induced subgraph rather than encoding of immediate neighbors only (i.e. a star). We choose the subgraph encoder to be a GNN (mainly MPNNs, considering scalability) to design a general framework that serves as a wrapper to uplift any GNN. We call our proposed method GNN-AK (GNN As Kernel), as the framework resembles a convolutional neural network by replacing the kernel withGNNs. Theoretically, we show that our framework …

Product quantization (PQ) coupled with a space rotation, is widely used in modern approximate nearest neighbor (ANN) search systems to significantly compress the disk storage for embeddings and speed up the inner product computation. Existing rotation learning methods, however, minimize quantization distortion for fixed embeddings, which are not applicable to an end-to-end training scenario where embeddings are updated constantly. In this paper, based on geometric intuitions from Lie group theory, in particular the special orthogonal groupSO(n), we propose a family of block Givens coordinate descent algorithms to learn rotation matrix that are provably convergent on any convex objectives. Compared to the state-of-the-art SVD method, the Givens algorithms are much more parallelizable, reducing runtime by orders of magnitude on modern GPUs, and converge more stably according to experimental studies. They further improve upon vanilla product quantization significantly in an end-to-end training scenario.
Anomaly detection is a widely studied task for a broad variety of data types; among them, multiple time series appear frequently in applications, including for example, power grids and traffic networks. Detecting anomalies for multiple time series, however, is a challenging subject, owing to the intricate interdependencies among the constituent series. We hypothesize that anomalies occur in low density regions of a distribution and explore the use of normalizing flows for unsupervised anomaly detection, because of their superior quality in density estimation. Moreover, we propose a novel flow model by imposing a Bayesian network among constituent series. A Bayesian network is a directed acyclic graph (DAG) that models causal relationships; it factorizes the joint probability of the series into the product of easy-to-evaluate conditional probabilities. We call such a graph-augmented normalizing flow approach GANF and propose joint estimation of the DAG with flow parameters. We conduct extensive experiments on real-world datasets and demonstrate the effectiveness of GANF for density estimation, anomaly detection, and identification of time series distribution drift.

Given the prevalence of large-scale graphs in real-world applications, the storage and time for training neural models have raised increasing concerns. To alleviate the concerns, we propose and study the problem of graph condensation for graph neural networks (GNNs). Specifically, we aim to condense the large, original graph into a small, synthetic and highly-informative graph, such that GNNs trained on the small graph and large graph have comparable performance. We approach the condensation problem by imitating the GNN training trajectory on the original graph through the optimization of a gradient matching loss and design a strategy to condense node futures and structural information simultaneously. Extensive experiments have demonstrated the effectiveness of the proposed framework in condensing different graph datasets into informative smaller graphs. In particular, we are able to approximate the original test accuracy by 95.3\% on Reddit, 99.8\% on Flickr and 99.0\% on Citeseer, while reducing their graph size by more than 99.9\%, and the condensed graphs can be used to train various GNN architectures.


A desirable property of autonomous agents is the ability to both solve long-horizon problems and generalize to unseen tasks. Recent advances in data-driven skill learning have shown that extracting behavioral priors from offline data can enable agents to solve challenging long-horizon tasks with reinforcement learning. However, generalization to tasks unseen during behavioral prior training remains an outstanding challenge. To this end, we present Few-shot Imitation with Skill Transition Models (FIST), an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks given a few downstream demonstrations. FIST learns an inverse skill dynamics model, a distance function, and utilizes a semi-parametric approach for imitation. We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments requiring traversing unseen parts of a large maze and 7-DoF robotic arm experiments requiring manipulating previously unseen objects in a kitchen.

Self-driving cars must detect vehicles, pedestrians, and other traffic participants accurately to operate safely. Small, far-away, or highly occluded objects are particularly challenging because there is limited information in the LiDAR point clouds for detecting them. To address this challenge, we leverage valuable information from the past: in particular, data collected in past traversals of the same scene. We posit that these past data, which are typically discarded, provide rich contextual information for disambiguating the above-mentioned challenging cases. To this end, we propose a novel end-to-end trainable Hindsight framework to extract this contextual information from past traversals and store it in an easy-to-query data structure, which can then be leveraged to aid future 3D object detection of the same scene. We show that this framework is compatible with most modern 3D detection architectures and can substantially improve their average precision on multiple autonomous driving datasets, most notably by more than 300% on the challenging cases. Our code is available at https://github.com/YurongYou/Hindsight.
Most existing Vision-and-Language (V&L) models rely on pre-trained visual encoders, using a relatively small set of manually-annotated data (as compared to web-crawled data), to perceive the visual world. However, it has been observed that large-scale pretraining usually can result in better generalization performance, e.g., CLIP (Contrastive Language-Image Pre-training), trained on a massive amount of image-caption pairs, has shown a strong zero-shot capability on various vision tasks. To further study the advantage brought by CLIP, we propose to use CLIP as the visual encoder in various V&L models in two typical scenarios: 1) plugging CLIP into task-specific fine-tuning; 2) combining CLIP with V&L pre-training and transferring to downstream tasks. We show that CLIP significantly outperforms widely-used visual encoders trained with in-domain annotated data, such as BottomUp-TopDown. We achieve competitive or better results on diverse V&L tasks, while establishing new state-of-the-art results on Visual Question Answering, Visual Entailment, and V&L Navigation tasks.

The issue of missing data in supervised learning has been largely overlooked, especially in the deep learning community. We investigate strategies to adapt neural architectures for handling missing values. Here, we focus on regression and classification problems where the features are assumed to be missing at random. Of particular interest are schemes that allow reusing as-is a neural discriminative architecture. To address supervised deep learning with missing values, we propose to marginalize over missing values in a joint model of covariates and outcomes. Thereby, we leverage both the flexibility of deep generative models to describe the distribution of the covariates and the power of purely discriminative models to make predictions. More precisely, a deep latent variable model can be learned jointly with the discriminative model, using importance-weighted variational inference, essentially using importance sampling to mimick averaging over multiple imputations. In low-capacity regimes, or when the discriminative model has a strong inductive bias, we find that our hybrid generative/discriminative approach generally outperforms single imputations methods.

For many differentially private algorithms, such as the prominent noisy stochastic gradient descent (DP-SGD), the analysis needed to bound the privacy leakage of a single training run is well understood. However, few studies have reasoned about the privacy leakage resulting from the multiple training runs needed to fine tune the value of the training algorithm’s hyperparameters. In this work, we first illustrate how simply setting hyperparameters based on non-private training runs can leak private information. Motivated by this observation, we then provide privacy guarantees for hyperparameter search procedures within the framework of Renyi Differential Privacy. Our results improve and extend the work of Liu and Talwar (STOC 2019). Our analysis supports our previous observation that tuning hyperparameters does indeed leak private information, but we prove that, under certain assumptions, this leakage is modest, as long as each candidate training run needed to select hyperparameters is itself differentially private.

Reliable out-of-distribution (OOD) detection is fundamental to implementing safer modern machine learning (ML) systems. In this paper, we introduce Igeood, an effective method for detecting OOD samples. Igeood applies to any pre-trained neural network, works under various degrees of access to the ML model, does not require OOD samples or assumptions on the OOD data but can also benefit (if available) from OOD samples. By building on the geodesic (Fisher-Rao) distance between the underlying data distributions, our discriminator can combine confidence scores from the logits outputs and the learned features of a deep neural network. Empirically, we show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.

Although DALL-E has shown an impressive ability of composition-based systematic generalization in image generation, it requires the dataset of text-image pairs and the compositionality is provided by the text. In contrast, object-centric representation models like the Slot Attention model learn composable representations without the text prompt. However, unlike DALL-E, its ability to systematically generalize for zero-shot generation is significantly limited. In this paper, we propose a simple but novel slot-based autoencoding architecture, called SLATE, for combining the best of both worlds: learning object-centric representations that allow systematic generalization in zero-shot image generation without text. As such, this model can also be seen as an illiterate DALL-E model. Unlike the pixel-mixture decoders of existing object-centric representation models, we propose to use the Image GPT decoder conditioned on the slots for capturing complex interactions among the slots and pixels. In experiments, we show that this simple and easy-to-implement architecture not requiring a text prompt achieves significant improvement in in-distribution and out-of-distribution (zero-shot) image generation and qualitatively comparable or better slot-attention structure than the models based on mixture decoders.

Self-supervised learning has recently shown great potential in vision tasks through contrastive learning, which aims to discriminate each image, or instance, in the dataset. However, such instance-level learning ignores the semantic relationship among instances and sometimes undesirably repels the anchor from the semantically similar samples, termed as "false negatives". In this work, we show that the unfavorable effect from false negatives is more significant for the large-scale datasets with more semantic concepts. To address the issue, we propose a novel self-supervised contrastive learning framework that incrementally detects and explicitly removes the false negative samples. Specifically, following the training process, our method dynamically detects increasing high-quality false negatives considering that the encoder gradually improves and the embedding space becomes more semantically structural. Next, we discuss two strategies to explicitly remove the detected false negatives during contrastive learning. Extensive experiments show that our framework outperforms other self-supervised contrastive learning methods on multiple benchmarks in a limited resource setup.

A challenging problem in task-free continual learning is the online selection of a representative replay memory from data streams. In this work, we investigate the online memory selection problem from an information-theoretic perspective. To gather the most information, we propose the \textit{surprise} and the \textit{learnability} criteria to pick informative points and to avoid outliers. We present a Bayesian model to compute the criteria efficiently by exploiting rank-one matrix structures. We demonstrate that these criteria encourage selecting informative points in a greedy algorithm for online memory selection. Furthermore, by identifying the importance of \textit{the timing to update the memory}, we introduce a stochastic information-theoretic reservoir sampler (InfoRS), which conducts sampling among selective points with high information. Compared to reservoir sampling, InfoRS demonstrates improved robustness against data imbalance. Finally, empirical performances over continual learning benchmarks manifest its efficiency and efficacy.

We are interested in training general-purpose reinforcement learning agents that can solve a wide variety of goals. Training such agents efficiently requires automatic generation of a goal curriculum. This is challenging as it requires (a) exploring goals of increasing difficulty, while ensuring that the agent (b) is exposed to a diverse set of goals in a sample efficient manner and (c) does not catastrophically forget previously solved goals. We propose Curriculum Self Play (CuSP), an automated goal generation framework that seeks to satisfy these desiderata by virtue of a multi-player game with 4 agents. We extend the asymmetric curricula learning in PAIRED (Dennis et al., 2020) to a symmetrized game that carefully balances cooperation and competition between two off-policy student learners and two regret-maximizing teachers. CuSP additionally introduces entropic goal coverage and accounts for the non-stationary nature of the students, allowing us to automatically induce a curriculum that balances progressive exploration with anti-catastrophic exploitation. We demonstrate that our method succeeds at generating an effective curricula of goals for a range of control tasks, outperforming other methods at zero-shot test-time generalization to novel out-of-distribution goals.

We present LSeg, a novel model for language-driven semantic image segmentation. LSeg uses a text encoder to compute embeddings of descriptive input labels (e.g., grass'' or
building'') together with a transformer-based image encoder that computes dense per-pixel embeddings of the input image. The image encoder is trained with a contrastive objective to align pixel embeddings to the text embedding of the corresponding semantic class. The text embeddings provide a flexible label representation in which semantically similar labels map to similar regions in the embedding space (e.g., cat'' and
furry''). This allows LSeg to generalize to previously unseen categories at test time, without retraining or even requiring a single additional training sample. We demonstrate that our approach achieves highly competitive zero-shot performance compared to existing zero- and few-shot semantic segmentation methods, and even matches the accuracy of traditional segmentation algorithms when a fixed label set is provided. Code and demo are available at https://github.com/isl-org/lang-seg.

Video recordings of speech contain correlated audio and visual information, providing a strong signal for speech representation learning from the speaker’s lip movements and the produced sound. We introduce Audio-Visual Hidden Unit BERT (AV-HuBERT), a self-supervised representation learning framework for audio-visual speech, which masks multi-stream video input and predicts automatically discovered and iteratively refined multimodal hidden units. AV-HuBERT learns powerful audio-visual speech representation benefiting both lip-reading and automatic speech recognition. On the largest public lip-reading benchmark LRS3 (433 hours), AV-HuBERT achieves 32.5% WER with only 30 hours of labeled data, outperforming the former state-of-the-art approach (33.6%) trained with a thousand times more transcribed video data (31K hours) (Makino et al., 2019). The lip-reading WER is further reduced to 26.9% when using all 433 hours of labeled data from LRS3 and combined with self-training. Using our audio-visual representation on the same benchmark for audio-only speech recognition leads to a 40% relative WER reduction over the state-of-the-art performance (1.3% vs 2.3%). Our code and models are available at https://github.com/facebookresearch/av_hubert.

How should state be constructed from a sequence of observations, so as to best achieve some objective? Most deep learning methods update the parameters of the state representation by gradient descent. However, no prior method for computing the gradient is fully satisfactory, for example consuming too much memory, introducing too much variance, or adding too much bias. In this work, we propose a new learning algorithm that addresses these limitations. The basic idea is to update the parameters of the representation by using the directional derivative along a candidate direction, a quantity that may be computed online with the same computational cost as the representation itself. We consider several different choices of candidate direction, including random selection and approximations to the true gradient, and investigate their performance on several synthetic tasks.


Learning hierarchical structures in sequential data -- from simple algorithmic patterns to natural language -- in a reliable, generalizable way remains a challenging problem for neural language models. Past work has shown that recurrent neural networks (RNNs) struggle to generalize on held-out algorithmic or syntactic patterns without supervision or some inductive bias. To remedy this, many papers have explored augmenting RNNs with various differentiable stacks, by analogy with finite automata and pushdown automata (PDAs). In this paper, we improve the performance of our recently proposed Nondeterministic Stack RNN (NS-RNN), which uses a differentiable data structure that simulates a nondeterministic PDA, with two important changes. First, the model now assigns unnormalized positive weights instead of probabilities to stack actions, and we provide an analysis of why this improves training. Second, the model can directly observe the state of the underlying PDA. Our model achieves lower cross-entropy than all previous stack RNNs on five context-free language modeling tasks (within 0.05 nats of the information-theoretic lower bound), including a task on which the NS-RNN previously failed to outperform a deterministic stack RNN baseline. Finally, we propose a restricted version of the NS-RNN that incrementally processes infinitely long sequences, and we present language modeling …

Deep Generative Networks (DGNs) are extensively employed in Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and their variants to approximate the data manifold, and data distribution on that manifold. However, training samples are often obtained based on preferences, costs, or convenience producing artifacts in the empirical data distribution e.g. the large fraction of smiling faces in the CelebA dataset or the large fraction of dark-haired individuals in FFHQ). {\em These inconsistencies will be reproduced when sampling from the trained DGN, which has far-reaching potential implications for fairness, data augmentation, anomaly detection, domain adaptation, and beyond.} In response, we develop a differential geometry based sampler -coined MaGNET- that, given any trained DGN, produces samples that are uniformly distributed on the learned manifold. We prove theoretically and empirically that our technique produces a uniform distribution on the manifold regardless of the training set distribution. We perform a range of experiments on various datasets and DGNs. One of them considers the state-of-the-art StyleGAN2 trained on FFHQ dataset, where uniform sampling via MaGNET increases distribution precision \& recall by 4.12\% \& 3.01\% and decreases gender bias by 41.2\%, without requiring labels or retraining.

A fundamental criticism of text-only language models (LMs) is their lack of grounding---that is, the ability to tie a word for which they have learned a representation, to its actual use in the world. However, despite this limitation, large pre-trained LMs have been shown to have a remarkable grasp of the conceptual structure of language, as demonstrated by their ability to answer questions, generate fluent text, or make inferences about entities, objects, and properties that they have never physically observed. In this work we investigate the extent to which the rich conceptual structure that LMs learn indeed reflects the conceptual structure of the non-linguistic world---which is something that LMs have never observed. We do this by testing whether the LMs can learn to map an entire conceptual domain (e.g., direction or colour) onto a grounded world representation given only a small number of examples. For example, we show a model what the word left" means using a textual depiction of a grid world, and assess how well it can generalise to related concepts, for example, the word
right", in a similar grid world. We investigate a range of generative language models of varying sizes (including GPT-2 and GPT-3), and see …

Learning energy-based model (EBM) requires MCMC sampling of the learned model as an inner loop of the learning algorithm. However, MCMC sampling of EBMs in high-dimensional data space is generally not mixing, because the energy function, which is usually parametrized by deep network, is highly multi-modal in the data space. This is a serious handicap for both theory and practice of EBMs. In this paper, we propose to learn EBM with a flow-based model (or in general latent variable model) serving as a backbone, so that the EBM is a correction or an exponential tilting of the flow-based model. We show that the model has a particularly simple form in the space of the latent variables of the generative model, and MCMC sampling of the EBM in the latent space mixes well and traverses modes in the data space. This enables proper sampling and learning of EBMs.

We present a new method for one shot domain adaptation. The input to our method is trained GAN that can produce images in domain A and a single reference image IB from domain B. The proposed algorithm can translate any output of the trained GAN from domain A to domain B. There are two main advantages of our method compared to the current state of the art: First, our solution achieves higher visual quality, e.g. by noticeably reducing overfitting. Second, our solution allows for more degrees of freedom to control the domain gap, i.e. what aspects of image IB are used to define the domain B. Technically, we realize the new method by building on a pre-trained StyleGAN generator as GAN and a pre-trained CLIP model for representing the domain gap. We propose several new regularizers for controlling the domain gap to optimize the weights of the pre-trained StyleGAN generator to output images in domain B instead of domain A. The regularizers prevent the optimization from taking on too many attributes of the single reference image. Our results show significant visual improvements over the state of the art as well as multiple applications that highlight improved control.

Light-weight convolutional neural networks (CNNs) are the de-facto for mobile vision tasks. Their spatial inductive biases allow them to learn representations with fewer parameters across different vision tasks. However, these networks are spatially local. To learn global representations, self-attention-based vision trans-formers (ViTs) have been adopted. Unlike CNNs, ViTs are heavy-weight. In this paper, we ask the following question: is it possible to combine the strengths of CNNs and ViTs to build a light-weight and low latency network for mobile vision tasks? Towards this end, we introduce MobileViT, a light-weight and general-purpose vision transformer for mobile devices. MobileViT presents a different perspective for the global processing of information with transformers, i.e., transformers as convolutions. Our results show that MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets. On the ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about 6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3 (CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the MS-COCO object detection task, MobileViT is 5.7% more accurate than MobileNetv3 for a similar number of parameters. Our source code is open-source and available at: https://github.com/apple/ml-cvnets

Humans commonly solve complex problems by decomposing them into easier subproblems and then combining the subproblem solutions. This type of compositional reasoning permits reuse of the subproblem solutions when tackling future tasks that share part of the underlying compositional structure. In a continual or lifelong reinforcement learning (RL) setting, this ability to decompose knowledge into reusable components would enable agents to quickly learn new RL tasks by leveraging accumulated compositional structures. We explore a particular form of composition based on neural modules and present a set of RL problems that intuitively admit compositional solutions. Empirically, we demonstrate that neural composition indeed captures the underlying structure of this space of problems. We further propose a compositional lifelong RL method that leverages accumulated neural components to accelerate the learning of future tasks while retaining performance on previous tasks via off-line RL over replayed experiences.

Most set prediction models in deep learning use set-equivariant operations, but they actually operate on multisets. We show that set-equivariant functions cannot represent certain functions on multisets, so we introduce the more appropriate notion of multiset-equivariance. We identify that the existing Deep Set Prediction Network (DSPN) can be multiset-equivariant without being hindered by set-equivariance and improve it with approximate implicit differentiation, allowing for better optimization while being faster and saving memory. In a range of toy experiments, we show that the perspective of multiset-equivariance is beneficial and that our changes to DSPN achieve better results in most cases. On CLEVR object property prediction, we substantially improve over the state-of-the-art Slot Attention from 8% to 77% in one of the strictest evaluation metrics because of the benefits made possible by implicit differentiation.

The release of tabular benchmarks, such as NAS-Bench-101 and NAS-Bench-201, has significantly lowered the computational overhead for conducting scientific research in neural architecture search (NAS). Although they have been widely adopted and used to tune real-world NAS algorithms, these benchmarks are limited to small search spaces and focus solely on image classification. Recently, several new NAS benchmarks have been introduced that cover significantly larger search spaces over a wide range of tasks, including object detection, speech recognition, and natural language processing. However, substantial differences among these NAS benchmarks have so far prevented their widespread adoption, limiting researchers to using just a few benchmarks. In this work, we present an in-depth analysis of popular NAS algorithms and performance prediction methods across 25 different combinations of search spaces and datasets, finding that many conclusions drawn from a few NAS benchmarks do \emph{not} generalize to other benchmarks. To help remedy this problem, we introduce \nasbs, a comprehensive and extensible collection of NAS benchmarks, accessible through a unified interface, created with the aim to facilitate reproducible, generalizable, and rapid NAS research. Our code is available at https://github.com/automl/naslib.

Offline reinforcement learning, which seeks to utilize offline/historical data to optimize sequential decision-making strategies, has gained surging prominence in recent studies. Due to the advantage that appropriate function approximators can help mitigate the sample complexity burden in modern reinforcement learning problems, existing endeavors usually enforce powerful function representation models (e.g. neural networks) to learn the optimal policies. However, a precise understanding of the statistical limits with function representations, remains elusive, even when such a representation is linear.Towards this goal, we study the statistical limits of offline reinforcement learning with linear model representations. To derive the tight offline learning bound, we design the variance-aware pessimistic value iteration (VAPVI), which adopts the conditional variance information of the value function for time-inhomogeneous episodic linear Markov decision processes (MDPs). VAPVI leverages estimated variances of the value functions to reweight the Bellman residuals in the least-square pessimistic value iteration and provides improved offline learning bounds over the best-known existing results (whereas the Bellman residuals are equally weighted by design). More importantly, our learning bounds are expressed in terms of system quantities, which provide natural instance-dependent characterizations that previous results are short of. We hope our results draw a clearer picture of what offline learning should …

We introduce Network Augmentation (NetAug), a new training method for improving the performance of tiny neural networks. Existing regularization techniques (e.g., data augmentation, dropout) have shown much success on large neural networks by adding noise to overcome over-fitting. However, we found these techniques hurt the performance of tiny neural networks. We argue that training tiny models are different from large models: rather than augmenting the data, we should augment the model, since tiny models tend to suffer from under-fitting rather than over-fitting due to limited capacity. To alleviate this issue, NetAug augments the network (reverse dropout) instead of inserting noise into the dataset or the network. It puts the tiny model into larger models and encourages it to work as a sub-model of larger models to get extra supervision, in addition to functioning as an independent model. At test time, only the tiny model is used for inference, incurring zero inference overhead. We demonstrate the effectiveness of NetAug on image classification and object detection. NetAug consistently improves the performance of tiny models, achieving up to 2.2% accuracy improvement on ImageNet. On object detection, achieving the same level of performance, NetAug requires 41% fewer MACs on Pascal VOC and 38% fewer …

Inferring interactions among entities is an important problem in studying dynamical systems, which greatly impacts the performance of downstream tasks, such as prediction. In this paper, we tackle the relational inference problem in a setting where each entity can potentially have a set of individualized information that other entities cannot have access to. Specifically, we represent the system using a graph in which the individualized information become node-specific information (NSI). We build our model in the framework of Neural Relation Inference (NRI), where the interaction among entities are uncovered using variational inference. We adopt NRI model to incorporate the individualized information by introducing private nodes in the graph that represent NSI. Such representation enables us to uncover more accurate relations among the agents and therefore leads to better performance on the downstream tasks. Our experiment results over real-world datasets validate the merit of our proposed algorithm.

Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs of working with real-world KGs.Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training.Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters.

We introduce Noisy Feature Mixup (NFM), an inexpensive yet effective method for data augmentation that combines the best of interpolation based training and noise injection schemes. Rather than training with convex combinations of pairs of examples and their labels, we use noise-perturbed convex combinations of pairs of data points in both input and feature space. This method includes mixup and manifold mixup as special cases, but it has additional advantages, including better smoothing of decision boundaries and enabling improved model robustness. We provide theory to understand this as well as the implicit regularization effects of NFM. Our theory is supported by empirical results, demonstrating the advantage of NFM, as compared to mixup and manifold mixup. We show that residual networks and vision transformers trained with NFM have favorable trade-offs between predictive accuracy on clean data and robustness with respect to various types of data perturbation across a range of computer vision benchmark datasets.

Offline reinforcement learning requires reconciling two conflicting aims: learning a policy that improves over the behavior policy that collected the dataset, while at the same time minimizing the deviation from the behavior policy so as to avoid errors due to distributional shift. This tradeoff is critical, because most current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy, and therefore need to either constrain these actions to be in-distribution, or else regularize their values. We propose a new offline RL method that never needs to evaluate actions outside of the dataset, but still enables the learned policy to improve substantially over the best behavior in the data through generalization. The main insight in our work is that, instead of evaluating unseen actions from the latest policy, we can approximate the policy improvement step implicitly by treating the state value function as a random variable, with randomness determined by the action (while still integrating over the dynamics to avoid excessive optimism), and then taking a state conditional upper expectile of this random variable to estimate the value of the best actions in that state. This leverages the generalization capacity of the function …
Research on generalization bounds for deep networks seeks to give ways to predict test error using just the training dataset and the network parameters. While generalization bounds can give many insights about architecture design, training algorithms etc., what they do not currently do is yield good predictions for actual test error. A recently introduced Predicting Generalization in Deep Learning competition aims to encourage discovery of methods to better predict test error. The current paper investigates a simple idea: can test error be predicted using {\em synthetic data,} produced using a Generative Adversarial Network (GAN) that was trained on the same training dataset? Upon investigating several GAN models and architectures, we find that this turns out to be the case. In fact, using GANs pre-trained on standard datasets, the test error can be predicted without requiring any additional hyper-parameter tuning. This result is surprising because GANs have well-known limitations (e.g. mode collapse) and are known to not learn the data distribution accurately. Yet the generated samples are good enough to substitute for test data. Several additional experiments are presented to explore reasons why GANs do well at this task. In addition to a new approach for predicting generalization, the counter-intuitive phenomena …
Selecting an appropriate optimizer for a given problem is of major interest for researchers and practitioners. Many analytical optimizers have been proposed using a variety of theoretical and empirical approaches; however, none can offer a universal advantage over other competitive optimizers. We are thus motivated to study a new problem named Optimizer Amalgamation: how can we best combine a pool of "teacher" optimizers into a single "student" optimizer that can have stronger problem-specific performance? In this paper, we draw inspiration from the field of "learning to optimize" to use a learnable amalgamation target. First, we define three differentiable amalgamation mechanisms to amalgamate a pool of analytical optimizers by gradient descent. Then, in order to reduce variance of the amalgamation process, we also explore methods to stabilize the amalgamation process by perturbing the amalgamation target. Finally, we present experiments showing the superiority of our amalgamated optimizer compared to its amalgamated components and learning to optimize baselines, and the efficacy of our variance reducing perturbations.
Sparse neural networks (NNs) are intensively investigated in literature due to their appeal in saving storage, memory, and computational costs. A recent work (Ramanujan et al., 2020) showed that, different from conventional pruning-and-finetuning pipeline, there exist hidden subnetworks in randomly initialized NNs that have good performance without training the weights. However, such "hidden subnetworks" have mediocre performances and require an expensive edge-popup algorithm to search for them. In this work, we define an extended class of subnetworks in randomly initialized NNs called disguised subnetworks, which are not only "hidden" in the random networks but also "disguised" -- hence can only be "unmasked" with certain transformations on weights. We argue that the unmasking process plays an important role in enlarging the capacity of the subnetworks and thus grants two major benefits: (i) the disguised subnetworks easily outperform the hidden counterparts; (ii) the unmasking process helps to relax the quality requirement on the sparse subnetwork mask so that the expensive edge-popup algorithm can be replaced with more efficient alternatives. On top of this new concept, we propose a novel two-stage algorithm that plays a Peek-a-Boo (PaB) game to identify the disguised subnetworks with a combination of two operations: (1) searching efficiently for …

\ldp deployments are vulnerable to inference attacks as an adversary can link the noisy responses to their identity and subsequently, auxiliary information using the \textit{order} of the data. An alternative model, shuffle \textsf{DP}, prevents this by shuffling the noisy responses uniformly at random. However, this limits the data learnability -- only symmetric functions (input order agnostic) can be learned. In this paper, we strike a balance and show that systematic shuffling of the noisy responses can thwart specific inference attacks while retaining some meaningful data learnability. To this end, we propose a novel privacy guarantee, \name-privacy, that captures the privacy of the order of a data sequence. \name-privacy allows tuning the granularity at which the ordinal information is maintained, which formalizes the degree the resistance to inference attacks trading it off with data learnability. Additionally, we propose a novel shuffling mechanism that can achieve \name-privacy and demonstrate the practicality of our mechanism via evaluation on real-world datasets.

Transformers have been successful in many vision tasks, thanks to their capability of capturing long-range dependency. However, their quadratic computational complexity poses a major obstacle for applying them to vision tasks requiring dense predictions, such as object detection, feature matching, stereo, etc. We introduce QuadTree Attention, which reduces the computational complexity from quadratic to linear. Our quadtree transformer builds token pyramids and computes attention in a coarse-to-fine manner. At each level, the top K patches with the highest attention scores are selected, such that at the next level, attention is only evaluated within the relevant regions corresponding to these top K patches. We demonstrate that quadtree attention achieves state-of-the-art performance in various vision tasks, e.g. with 4.0% improvement in feature matching on ScanNet, about 50% flops reduction in stereo matching, 0.4-1.5% improvement in top-1 accuracy on ImageNet classification, 1.2-1.8% improvement on COCO object detection, and 0.7-2.4% improvement on semantic segmentation over previous state-of-the-art transformers. The codes are available at https://github.com/Tangshitao/QuadtreeAttention.

Automatic speech recognition systems have created exciting possibilities for applications, however they also enable opportunities for systematic eavesdropping.We propose a method to camouflage a person's voice from these systems without inconveniencing the conversation between people in the room. Standard adversarial attacks are not effective in real-time streaming situations because the characteristics of the signal will have changed by the time the attack is executed. We introduce predictive adversarial attacks, which achieves real-time performance by forecasting the attack vector that will be the most effective in the future. Under real-time constraints, our method jams the established speech recognition system DeepSpeech 3.9x more than online projected gradient descent as measured through word error rate, and 6.6x more as measured through character error rate. We furthermore demonstrate our approach is practically effective in realistic environments with complex scene geometries.

Vision transformer (ViT) has recently shown its strong capability in achieving comparable results to convolutional neural networks (CNNs) on image classification. However, vanilla ViT simply inherits the same architecture from the natural language processing directly, which is often not optimized for vision applications. Motivated by this, in this paper, we propose a new architecture that adopts the pyramid structure and employ novel regional-to-local attention rather than global self-attention in vision transformers. More specifically, our model first generates regional tokens and local tokens from an image with different patch sizes, where each regional token is associated with a set of local tokens based on the spatial location. The regional-to-local attention includes two steps: first, the regional self-attention extracts global information among all regional tokens and then the local self-attention exchanges the information among one regional token and the associated local tokens via self-attention. Therefore, even though local self-attention confines the scope in a local region but it can still receive global information.Extensive experiments on four vision tasks, including image classification, object and keypoint detection, semantics segmentation and action recognition, show that our approach outperforms or is on par with state-of-the-art ViT variants including many concurrent works. Our source codes and models …
Many deep neural network architectures loosely based on brain networks have recently been shown to replicate neural firing patterns observed in the brain. One of the most exciting and promising novel architectures, the Transformer neural network, was developed without the brain in mind. In this work, we show that transformers, when equipped with recurrent position encodings, replicate the precisely tuned spatial representations of the hippocampal formation; most notably place and grid cells. Furthermore, we show that this result is no surprise since it is closely related to current hippocampal models from neuroscience. We additionally show the transformer version offers dramatic performance gains over the neuroscience version. This work continues to bind computations of artificial and brain networks, offers a novel understanding of the hippocampal-cortical interaction, and suggests how wider cortical areas may perform complex tasks beyond current neuroscience models such as language comprehension.

Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.

Deep neural networks can be unreliable in the real world especially when they heavily use {\it spurious} features for their predictions. Focusing on image classifications, we define {\it core features} as the set of visual features that are always a part of the object definition while {\it spurious features} are the ones that are likely to {\it co-occur} with the object but not a part of it (e.g., attribute fingers" for class
band aid"). Traditional methods for discovering spurious features either require extensive human annotations (thus, not scalable), or are useful on specific models. In this work, we introduce a {\it general} framework to discover a subset of spurious and core visual features used in inferences of a general model and localize them on a large number of images with minimal human supervision. Our methodology is based on this key idea: to identify spurious or core \textit{visual features} used in model predictions, we identify spurious or core \textit{neural features} (penultimate layer neurons of a robust model) via limited human supervision (e.g., using top 5 activating images per feature). We then show that these neural feature annotations {\it generalize} extremely well to many more images {\it without} any human supervision. We …


Self-supervised contrastive representation learning has proved incredibly successful in the vision and natural language domains, enabling state-of-the-art performance with orders of magnitude less labeled data. However, such methods are domain-specific and little has been done to leverage this technique on real-world \emph{tabular} datasets. We propose \textsc{Scarf}, a simple, widely-applicable technique for contrastive learning, where views are formed by corrupting a random subset of features. When applied to pre-train deep neural networks on the 69 real-world, tabular classification datasets from the OpenML-CC18 benchmark, \textsc{Scarf} not only improves classification accuracy in the fully-supervised setting but does so also in the presence of label noise and in the semi-supervised setting where only a fraction of the available training data is labeled. We show that \textsc{Scarf} complements existing strategies and outperforms alternatives like autoencoders. We conduct comprehensive ablations, detailing the importance of a range of factors.

Score-based generative models (SGMs) have demonstrated remarkable synthesis quality. SGMs rely on a diffusion process that gradually perturbs the data towards a tractable distribution, while the generative model learns to denoise. The complexity of this denoising task is, apart from the data distribution itself, uniquely determined by the diffusion process. We argue that current SGMs employ overly simplistic diffusions, leading to unnecessarily complex denoising processes, which limit generative modeling performance. Based on connections to statistical mechanics, we propose a novel critically-damped Langevin diffusion (CLD) and show that CLD-based SGMs achieve superior performance. CLD can be interpreted as running a joint diffusion in an extended space, where the auxiliary variables can be considered "velocities" that are coupled to the data variables as in Hamiltonian dynamics. We derive a novel score matching objective for CLD and show that the model only needs to learn the score function of the conditional distribution of the velocity given data, an easier task than learning scores of the data directly. We also derive a new sampling scheme for efficient synthesis from CLD-based diffusion models. We find that CLD outperforms previous SGMs in synthesis quality for similar network architectures and sampling compute budgets. We show that our …

Automated seizure detection and classification from electroencephalography (EEG) can greatly improve seizure diagnosis and treatment. However, several modeling challenges remain unaddressed in prior automated seizure detection and classification studies: (1) representing non-Euclidean data structure in EEGs, (2) accurately classifying rare seizure types, and (3) lacking a quantitative interpretability approach to measure model ability to localize seizures. In this study, we address these challenges by (1) representing the spatiotemporal dependencies in EEGs using a graph neural network (GNN) and proposing two EEG graph structures that capture the electrode geometry or dynamic brain connectivity, (2) proposing a self-supervised pre-training method that predicts preprocessed signals for the next time period to further improve model performance, particularly on rare seizure types, and (3) proposing a quantitative model interpretability approach to assess a model’s ability to localize seizures within EEGs. When evaluating our approach on seizure detection and classification on a large public dataset (5,499 EEGs), we find that our GNN with self-supervised pre-training achieves 0.875 Area Under the Receiver Operating Characteristic Curve on seizure detection and 0.749 weighted F1-score on seizure classification, outperforming previous methods for both seizure detection and classification. Moreover, our self-supervised pre-training strategy significantly improves classification of rare seizure types (e.g. …
Offline reinforcement learning (RL) algorithms can acquire effective policies by utilizing only previously collected experience, without any online interaction. While it is widely understood that offline RL is able to extract good policies even from highly suboptimal data, in practice offline RL is often used with data that resembles demonstrations. In this case, one can also use behavioral cloning (BC) algorithms, which mimic a subset of the dataset via supervised learning. It seems natural to ask: When should we prefer offline RL over BC? In this paper, our goal is to characterize environments and dataset compositions where offline RL leads to better performance than BC. In particular, we characterize the properties of environments that allow offline RL methods to perform better than BC methods even when only provided with expert data. Additionally, we show that policies trained on suboptimal data that is sufficiently noisy can attain better performance than even BC algorithms with expert data, especially on long-horizon problems. We validate our theoretical results via extensive experiments on both diagnostic and high-dimensional domains including robot manipulation, maze navigation and Atari games, when learning from a variety of data sources. We observe that modern offline RL methods trained on suboptimal, noisy …

We present a novel methodology for repairing neural networks that use ReLU activation functions. Unlike existing methods that rely on modifying the weights of a neural network which can induce a global change in the function space, our approach applies only a localized change in the function space while still guaranteeing the removal of the buggy behavior. By leveraging the piecewise linear nature of ReLU networks, our approach can efficiently construct a patch network tailored to the linear region where the buggy input resides, which when combined with the original network, provably corrects the behavior on the buggy input. Our method is both sound and complete -- the repaired network is guaranteed to fix the buggy input, and a patch is guaranteed to be found for any buggy input. Moreover, our approach preserves the continuous piecewise linear nature of ReLU networks, automatically generalizes the repair to all the points including other undetected buggy inputs inside the repair region, is minimal in terms of changes in the function space, and guarantees that outputs on inputs away from the repair region are unaltered. On several benchmarks, we show that our approach significantly outperforms existing methods in terms of locality and limiting negative …

We developed Distilled Graph Attention Policy Networks (DGAPNs), a reinforcement learning model to generate novel graph-structured chemical representations that optimize user-defined objectives by efficiently navigating a physically constrained domain. The framework is examined on the task of generating molecules that are designed to bind, noncovalently, to functional sites of SARS-CoV-2 proteins. We present a spatial Graph Attention (sGAT) mechanism that leverages self-attention over both node and edge attributes as well as encoding the spatial structure --- this capability is of considerable interest in synthetic biology and drug discovery. An attentional policy network is introduced to learn the decision rules for a dynamic, fragment-based chemical environment, and state-of-the-art policy gradient techniques are employed to train the network with stability. Exploration is driven by the stochasticity of the action space design and the innovation reward bonuses learned and proposed by random network distillation. In experiments, our framework achieved outstanding results compared to state-of-the-art algorithms, while reducing the complexity of paths to chemical synthesis.

We consider representation learning of 3D molecular graphs in which each atom is associated with a spatial position in 3D. This is an under-explored area of research, and a principled message passing framework is currently lacking. In this work, we conduct analyses in the spherical coordinate system (SCS) for the complete identification of 3D graph structures. Based on such observations, we propose the spherical message passing (SMP) as a novel and powerful scheme for 3D molecular learning. SMP dramatically reduces training complexity, enabling it to perform efficiently on large-scale molecules. In addition, SMP is capable of distinguishing almost all molecular structures, and the uncovered cases may not exist in practice. Based on meaningful physically-based representations of 3D information, we further propose the SphereNet for 3D molecular learning. Experimental results demonstrate that the use of meaningful 3D information in SphereNet leads to significant performance improvements in prediction tasks. Our results also demonstrate the advantages of SphereNet in terms of capability, efficiency, and scalability.


It is widely believed that the implicit regularization of SGD is fundamental to the impressive generalization behavior we observe in neural networks. In this work, we demonstrate that non-stochastic full-batch training can achieve comparably strong performance to SGD on CIFAR-10 using modern architectures. To this end, we show that the implicit regularization of SGD can be completely replaced with explicit regularization. Our observations indicate that the perceived difficulty of full-batch training may be the result of its optimization properties and the disproportionate time and effort spent by the ML community tuning optimizers and hyperparameters for small-batch training.


Pretraining Neural Language Models (NLMs) over a large corpus involves chunking the text into training examples, which are contiguous text segments of sizes processable by the neural architecture. We highlight a bias introduced by this common practice: we prove that the pretrained NLM can model much stronger dependencies between text segments that appeared in the same training example, than it can between text segments that appeared in different training examples. This intuitive result has a twofold role. First, it formalizes the motivation behind a broad line of recent successful NLM training heuristics, proposed for the pretraining and fine-tuning stages, which do not necessarily appear related at first glance. Second, our result clearly indicates further improvements to be made in NLM pretraining for the benefit of Natural Language Understanding tasks. As an example, we propose ``kNN-Pretraining": we show that including semantically related non-neighboring sentences in the same pretraining example yields improved sentence representations and open domain question answering abilities.This theoretically motivated degree of freedom for pretraining example design indicates new training schemes for self-improving representations.


Recent advances in machine learning have brought opportunities for the ever-increasing use of AI in the real world. This has created concerns about the black-box nature of many of the most recent machine learning approaches. In this work, we propose an interpretable neural network that leverages metric and prototype learning for classification tasks. It encodes its own explanations and provides an improved case-based reasoning through learning prototypes in an embedding space learned by a probabilistic nearest neighbor rule. Through experiments, we demonstrated the effectiveness of the proposed method in both performance and the accuracy of the explanations provided.

Few-shot learning is an established topic in natural images for years, but few work is attended to histology images, which is of high clinical value since well-labeled datasets and rare abnormal samples are expensive to collect. Here, we facilitate the study of few-shot learning in histology images by setting up three cross-domain tasks that simulate real clinics problems. To enable label-efficient learning and better generalizability, we propose to incorporate contrastive learning (CL) with latent augmentation (LA) to build a few-shot system. CL learns useful representations without manual labels, while LA transfers semantic variations of the base dataset in an unsupervised way. These two components fully exploit unlabeled training data and can scale gracefully to other label-hungry problems. In experiments, we find i) models learned by CL generalize better than supervised learning for histology images in unseen classes, and ii) LA brings consistent gains over baselines. Prior studies of self-supervised learning mainly focus on ImageNet-like images, which only present a dominant object in their centers. Recent attention has been paid to images with multi-objects and multi-textures. Histology images are a natural choice for such a study. We show the superiority of CL over supervised learning in terms of generalization for such …

Rate-distortion (R-D) function, a key quantity in information theory, characterizes the fundamental limit of how much a data source can be compressed subject to a fidelity criterion, by any compression algorithm. As researchers push for ever-improving compression performance, establishing the R-D function of a given data source is not only of scientific interest, but also sheds light on the possible room for improving compression algorithms. Previous work on this problem relied on distributional assumptions on the data source (Gibson, 2017) or only applied to discrete data (Blahut, 1972; Arimoto, 1972). By contrast, this paper makes the first attempt at an algorithm for sandwiching the R-D function of a general (not necessarily discrete) source requiring only i.i.d. data samples. We estimate R-D sandwich bounds for a variety of artificial and real-world data sources, in settings far beyond the feasibility of any known method, and shed light on the optimality of neural data compression (Ballé et al., 2021; Yang et al., 2022). Our R-D upper bound on natural images indicates theoretical room for improving state-of-the-art image compression methods by at least one dB in PSNR at various bitrates. Our data and code can be found at https://github.com/mandt-lab/empirical-RD-sandwich.

An agent's functionality is largely determined by its design, i.e., skeletal structure and joint attributes (e.g., length, size, strength). However, finding the optimal agent design for a given function is extremely challenging since the problem is inherently combinatorial and the design space is prohibitively large. Additionally, it can be costly to evaluate each candidate design which requires solving for its optimal controller. To tackle these problems, our key idea is to incorporate the design procedure of an agent into its decision-making process. Specifically, we learn a conditional policy that, in an episode, first applies a sequence of transform actions to modify an agent's skeletal structure and joint attributes, and then applies control actions under the new design. To handle a variable number of joints across designs, we use a graph-based policy where each graph node represents a joint and uses message passing with its neighbors to output joint-specific actions. Using policy gradient methods, our approach enables joint optimization of agent design and control as well as experience sharing across different designs, which improves sample efficiency substantially. Experiments show that our approach, Transform2Act, outperforms prior methods significantly in terms of convergence speed and final performance. Notably, Transform2Act can automatically discover plausible …

Wide neural networks with linear output layer have been shown to be near-linear, and to have near-constant neural tangent kernel (NTK), in a region containing the optimization path of gradient descent. These findings seem counter-intuitive since in general neural networks are highly complex models. Why does a linear structure emerge when the neural networks become wide? In this work, we provide a new perspective on this "transition to linearity" by considering a neural network as an assembly model recursively built from a set of sub-models corresponding to individual neurons. In this view, we show that the linearity of wide neural networks is, in fact, an emerging property of assembling a large number of diverse ``weak'' sub-models, none of which dominate the assembly.

We study how the choice of visual perspective affects learning and generalization in the context of physical manipulation from raw sensor observations. Compared with the more commonly used global third-person perspective, a hand-centric (eye-in-hand) perspective affords reduced observability, but we find that it consistently improves training efficiency and out-of-distribution generalization. These benefits hold across a variety of learning algorithms, experimental settings, and distribution shifts, and for both simulated and real robot apparatuses. However, this is only the case when hand-centric observability is sufficient; otherwise, including a third-person perspective is necessary for learning, but also harms out-of-distribution generalization. To mitigate this, we propose to regularize the third-person information stream via a variational information bottleneck. On six representative manipulation tasks with varying hand-centric observability adapted from the Meta-World benchmark, this results in a state-of-the-art reinforcement learning agent operating from both perspectives improving its out-of-distribution generalization on every task. While some practitioners have long put cameras in the hands of robots, our work systematically analyzes the benefits of doing so and provides simple and broadly applicable insights for improving end-to-end learned vision-based robotic manipulation.

Given a pair of partially overlapping source and target images and a keypoint in the source image, the keypoint's correspondent in the target image can be either visible, occluded or outside the field of view. Local feature matching methods are only able to identify the correspondent's location when it is visible, while humans can also hallucinate its location when it is occluded or outside the field of view through geometric reasoning. In this paper, we bridge this gap by training a network to output a peaked probability distribution over the correspondent's location, regardless of this correspondent being visible, occluded, or outside the field of view. We experimentally demonstrate that this network is indeed able to hallucinate correspondences on pairs of images captured in scenes that were not seen at training-time. We also apply this network to an absolute camera pose estimation problem and find it is significantly more robust than state-of-the-art local feature matching-based competitors.

Connectionist Temporal Classification (CTC) loss is commonly used in sequence learning applications. For example, in Automatic Speech Recognition (ASR) task, the training data consists of pairs of audio (input sequence) and text (output label),without temporal alignment information. Standard CTC computes a loss by aggregating over all possible alignment paths, that map the entire sequence to the entire label (full alignment). However, in practice, there are often cases where the label is incomplete. Specifically, we solve the partial alignment problem where the label only matches a middle part of the sequence. This paper proposes the wild-card CTC (W-CTC) to address this issue, by padding wild-cards at both ends of the labels. Consequently, the proposed W-CTC improves the standard CTC via aggregating over even more alignment paths. Evaluations on a number of tasks in speech and vision domains, show that the proposed W-CTC consistently outperforms the standard CTC by a large margin when label is incomplete. The effectiveness of the proposed method is further confirmed in an ablation study.

The practice of data augmentation has been extensively used to boost the performance of deep neural networks for various NLP tasks. It is more effective when only a limited number of labeled samples is available, e.g., low-data or class-imbalanced regimes. Most current augmentation techniques rely on parameter tuning or inherent randomness; hence, their effectiveness largely varies on the tasks. To efficiently find the best augmentation strategy for each task, learning data augmentation policy is a promising solution, but the question of what makes a good augmentation in NLP tasks and how to design the reward function for learning a good policy remains under-explored. To answer this, we hypothesize that good data augmentation should construct more diverse and challenging samples for providing informative training signals, while avoiding the risk of losing the semantics of original samples. Therefore, we design a novel reward function for updating the augmentation policy to construct difficult but not too different samples (DND). Particularly, we jointly optimize a data augmentation policy while training the model, to construct the augmented samples with low confidence but a high semantic similarity with original ones. In addition, we introduce a sample re-weighting scheme to focus on difficult augmented samples after the …

Vision Transformers (ViTs) and MLPs signal further efforts on replacing hand-wired features or inductive biases with general-purpose neural architectures. Existing works empower the models by massive data, such as large-scale pre-training and/or repeated strong data augmentations, and still report optimization-related problems (e.g., sensitivity to initialization and learning rates). Hence, this paper investigates ViTs and MLP-Mixers from the lens of loss geometry, intending to improve the models' data efficiency at training and generalization at inference. Visualization and Hessian reveal extremely sharp local minima of converged models. By promoting smoothness with a recently proposed sharpness-aware optimizer, we substantially improve the accuracy and robustness of ViTs and MLP-Mixers on various tasks spanning supervised, adversarial, contrastive, and transfer learning (e.g., +5.3\% and +11.0\% top-1 accuracy on ImageNet for ViT-B/16 and Mixer-B/16, respectively, with the simple Inception-style preprocessing). We show that the improved smoothness attributes to sparser active neurons in the first few layers. The resultant ViTs outperform ResNets of similar size and throughput when trained from scratch on ImageNet without large-scale pre-training or strong data augmentations. Model checkpoints are available at \url{https://github.com/google-research/vision_transformer}.

Deep neural networks (DNNs) often rely on easy–to–learn discriminatory features, or cues, that are not necessarily essential to the problem at hand. For example, ducks in an image may be recognized based on their typical background scenery, such as lakes or streams. This phenomenon, also known as shortcut learning, is emerging as a key limitation of the current generation of machine learning models. In this work, we introduce a set of experiments to deepen our understanding of shortcut learning and its implications. We design a training setup with several shortcut cues, named WCST-ML, where each cue is equally conducive to the visual recognition problem at hand. Even under equal opportunities, we observe that (1) certain cues are preferred to others, (2) solutions biased to the easy–to–learn cues tend to converge to relatively flat minima on the loss surface, and (3) the solutions focusing on those preferred cues are far more abundant in the parameter space. We explain the abundance of certain cues via their Kolmogorov (descriptional) complexity: solutions corresponding to Kolmogorov-simple cues are abundant in the parameter space and are thus preferred by DNNs. Our studies are based on the synthetic dataset DSprites and the face dataset UTKFace. In our …
Affinity Event: LatinX in AI (LXAI) Social @ ICLR 2022 Mon 25 Apr 07:00 p.m.
This LatinX in AI (LXAI) social is aimed at LatinX individuals working on or interested in AI with a goal to increase the visibility of researchers of LatinX origin. Those already working in AI will have the opportunity to connect with fellow LatinX and make their own work known, while those new to the field will benefit from the scientific exchange, guidance, and advice of researchers with similar backgrounds. Participants will be able to engage in discussions about AI (formal and informal) and to share their thoughts on how to increase the presence of LatinX in AI.
During this social, we’ll feature invited talks from prominent LatinX in AI community members and host roundtable discussions facilitating conversations among attendees.
Affinity Event: WiML Virtual Social Mon 25 Apr 07:00 p.m.
A 1 hour panel and 1 hour socializing event. The panel will be featuring ML researchers at various career stages who will talk about their experience networking, job hunting, collaborating and/or starting a new position.